

Ravenblack Products

Enhanced Sub-tag Suite

for Content Intelligence

Content Intelligence -

Ravenblack Products

Content Intelligence -

Productivity Suite

Version: 1.3.3(3)

Release Date: 2025-03-04

Version: 1.2.3

Release Status: Draft

Release Date: 2023-08-31

TABLE OF CONTENTS

Table of Contents ... 1

OVERVIEW	..	1

DEVELOPMENT & SUPPORT SUB-TAGS	..	2

RB_Break ... 2

RB_BuildSubtags ... 2

RB_CSVersion ... 2

RB_MakeTagGuide ... 2

RB_RegisterWithCSApp .. 2

RB_ThreadData ... 2

RB_Timer ... 3

RB_Trace .. 5

APPLICATION DEVELOPMENT SUB-TAGS	..	6

RB_Assoc .. 6

RB_ConcatIf ... 6

RB_CondRowInsert .. 7

RB_Decode .. 8

RB_ForceType ... 11

RB_GetText .. 11

RB_GetUploadContent .. 12

RB_JSONBuild .. 13

RB_List ... 15

RB_Log ... 19

RB_RunSearch .. 21

RB_SaveError .. 23

RB_ServerName .. 24

RB_SetMultiVars ... 24

RB_SORT ... 26

RB_StrFormat .. 29

RB_SubTypeConvert .. 29

RB_UnifyEOL .. 31

RB_Unzip ... 32

DATA READ/WRITE SUB-TAGS	...	33

RB_CacheRead ... 33

RB_CacheWrite ... 34

RB_CSAppKiniRead ... 35

RB_CSAppKiniWrite ... 36

RB_FileAction ... 37

RB_FileInfo .. 40

RB_FormDBRead .. 42

RB_FormDBWrite ... 50

RB_GetTextFile ... 57

RB_IniPrefsRead ... 57

RB_IniPrefsWrite .. 57

RB_KINIREAD ... 58

RB_KINIWRITE .. 58

RB_RbPrefsRead .. 59

RB_RBPREFSWRITE .. 59

RB_ThreadVarRead .. 60

RB_ THREADVARWRITE ... 60

OVERRIDES	..	61

LLURL_FUNCTIONMENU .. 61

RB_NODEINFO .. 61

RB_SecureToken .. 61

RB_VersionAction .. 61

TOJSON .. 61

BETA SUB-TAGS	..	62

RB_ZIP .. 62

RB_CSAPPINFO .. 62

RB_SETEXTDATA ... 62

RB_USERINFO .. 62

RB_WEBREPORTBUILDER ... 62

SUPPORTING SUB-TAGS	...	63

ABOUT RAVENBLACK	..	64

Ravenblack Products
Enhanced Sub-tag Suite Date: 2025-03-04

1.3.3(3)

Page 1

Overview
This is a suite of new “sub-tags” developed by Ravenblack that extend the OpenText
WebReports product to provide additional features and functionality that can be used within
any WebReport or ActiveView. These sub-tags are designed as “drop-ins” that can be
implemented simply by adding two files to a designated folder within Content Server.
Although normally a restart is required on each server to activate these drop-in sub-tags,
Ravenblack also provides the Ravenblack Sub-tag Loader tool which allows sub-tags to be
activated without a restart. (This tool is usually provided in conjunction with this sub-tag
suite).

These sub-tags have been broken down into the following categories:

• Development, Support and Debugging
• General Application Development
• Data Saving & Retrieval
• Extensions to Existing Sub-tags

Note that as with all sub-tags, a data tag is required to use these sub-tags. Any kind of data tag
can be used (i.e. $constant, ¶meter, !variable, and %variable). For some of these sub-tags
a literal data tag will be the most appropriate choice:
e.g. [LL_REPTAG_ '<fileName>' /]

Ravenblack Products
Enhanced Sub-tag Suite Date: 2025-03-04

1.3.3(3)

Page 2

Development & Support Sub-tags
RB_BREAK
The RB_BREAK sub-tag causes a break in the execution of a WebReport, using
Scheduler.debugBreak().

It is only useful when the Eclipse IDE (or builder) is active.

RB_BUILDSUBTAGS
This sub-tag forces a build of all drop-in sub-tags available in the webreports/subtags folder.
This build only occurs for whichever thread the sub-tag is executed on.

RB_CSVERSION
This sub-tag returns the current Content Server version and build information. A “FORMAT”
option returns the data in a format that is easier to programmatically parse: (x.y.z_yy.q.build),
e.g.: 16.2.17_21.3.1604

RB_MAKETAGGUIDE
This sub-tag forces a rebuild of the tag guide. Normally this tag guide is re-built on a system
restart.

RB_REGISTERWITHCSAPP
This sub-tag can be used to mark any given WebReport as being owned by a particular
Content Server Application (CSApp). This ownership is normally created during install but
this sub-tag allows developers to create this ownership relationship during development.

RB_THREADDATA
The RB_THREADDATA sub-tag does not require any value in the data tag and returns the
thread index by default.

It also supports the following two mutually exclusive parameters:

Syntax

TOTALTHREADS
The TOTALTHREADS parameter returns the total number of threads being used on the
server.

Ravenblack Products
Enhanced Sub-tag Suite Date: 2025-03-04

1.3.3(3)

Page 3

BOTH
The BOTH parameter returns the thread index and the TOTALTHREADS value in a JSON
format.

Example:
{
 "threadIndex":4,
 "totalThreads":8
}

RB_TIMER
The RB_TIMER sub-tag provides a way for WebReports developers to set timestamps
between multiple points of execution in order to generate reports with delta measurements.
Reports can be generated in the output, thread logs or in a unique WebReports log.

Syntax
The RB_TIMER sub-tag includes a number of syntax variations that will allow the
organization set start and end points and identify output location.

RB_TIMER:SET:<eventString>:[optionalParameter]
This syntax captures a time stamp for different points of time in the execution of a WebReport
(or ActiveView).

In addition to any automatic information generated, the SET action accepts additional
parameters to create a unique string to output on reporting for each timestamp.
It is possible to specify a string with variable markers in it, followed by one or more data
fields to insert into the string. This is equivalent to the OScript STR.Format function, or the
printf function in other languages like C or Java.

Example:
RB_TIMER:SET:
"Performed %1 action on DataId:%2":[LL_REPTAG_&action /]:[LL_REPTAG=DataId
/]

The %1 marker will be replaced by the value returned by the &action tag, and the %2
marker will be replaced by the value returned by the DataId (column reference) data tag.

RB_TIMER:REPORT:<optionalParameters>
The Report option causes a report to be generated showing all set points along with delta
measurements between each set point.

Example:

Ravenblack Products
Enhanced Sub-tag Suite Date: 2025-03-04

1.3.3(3)

Page 4

This option is always followed by a location parameter which must be one of the following.
ALL: generates a report to all of the locations.
WROutput: generates a report in the output of the WebReport itself.
ThreadLog: generates a report in the standard thread log.
WRLog: uses the RB_LOG sub-tag functionality to write the output to a WebReports log file.

Additional information is provided for each location below.

WROutput

When the RB_TIMER:REPORT:WROutput sub-tag syntax is used, it will generate a report
that is included in any output from the WebReport.

ThreadLog

If this location is specified, the report is included in a thread log. Thread logs are normally
found in:
C:\OPENTEXT\<instance_name>\logs\thread_logs

WRLog

If this location is specified, and the RB_LOG sub-tag is installed, a WebReports specific log
file will be generated in the following path by default:
...\logs\ContentIntelligence_RBlogs

The log file will be named according to the timer name.

Example:

[LL_REPTAG_'testTimer' RB_TIMER:SET:'Pre data source #1' /]

For further information on the naming for log files generated, please refer to the RB_LOG
Naming section.

Ravenblack Products
Enhanced Sub-tag Suite Date: 2025-03-04

1.3.3(3)

Page 5

RB_TIMER:REPORT:<location>:RAWVALUES
This sub-tag provides a CSV-type data dump. It defaults to the column marker being a comma
(,) and the row marker being End Of Line (usually Line Feed/Carriage Return characters).

An alternative column marker and row marker can be provided.

Example:
RB_TIMER:REPORT:WRLog:RAWVALUES:,:|

RB_TRACE
The RB_TRACE sub-tag forces a trace log to occur at the point where the sub-tag is
executed.

It is most useful when the normal Content Server service is active (i.e. no IDE).

Ravenblack Products
Enhanced Sub-tag Suite Date: 2025-03-04

1.3.3(3)

Page 6

Application Development Sub-tags
RB_ASSOC
The RB_Assoc expects an Assoc structure in the data tag and performs all of the functions of
the existing ASSOC sub-tag but with four additional functions. These functions are:

Function Description
@keys Returns an Oscript list with all of the keys in the Assoc specified with

the main data tag. This is equivalent to the Assoc.keys() function in
Oscript.

@isAssoc Returns true or false depending on whether the data returned in the
main data tag is an Assoc or not.

@items
@values

(Both of these functions do the same thing.) Returns an Oscript list
with all of the items (values) in the Assoc specified with the main data
tag. This is equivalent to the Assoc.items() function in Oscript.

@swapkeyvalues Returns a new Oscript structure where the values and keys specified in
an Assoc in the main data tag, have been swapped. E.g., the new
ASSOC can be indexed with a value in order to return the matching
key.

Syntax
RB_ASSOC:@<function>

RB_CONCATIF
The RB_ConcatIf sub-tag provides a variation on the DECODE or
RB_Decode sub-tags. Rather than replacing the original value with a new value when a match
is found, this sub-tag pre-pends or appends a new value to the original value. This sub-tag
also supports all of the
RB_Decode functions.

Syntax
RB_ConcatIf:BEFORE:<match>:<newvalue>:<match>:<newvalue>…

RB_ConcatIf:AFTER:<match>:<newvalue>:<match>:<newvalue>…

The syntax for this sub-tag is very similar to
RB_Decode but the first parameter is mandatory and is either “BEFORE” or “AFTER” and
determines whether a new value (if any) is concatenated before the original data or after it.
Note that if there is no match found, then the original value is left as it was.

Ravenblack Products
Enhanced Sub-tag Suite Date: 2025-03-04

1.3.3(3)

Page 7

RB_CONDROWINSERT
The RB_CONDROWINSERT sub-tag accepts a data string and determines whether to output
that data based on a few defined conditions. This is useful for building lists to determine
whether separators should be inserted or not. For example, this can solve the issue when
concatenating items in a list and trying to avoid unwanted leading or trailing delimiters.
Typically, the data tag is used to return a delimiter such as a comma.

Notes:
This sub-tag only works in the row section when used with an unmodified data set that has
not been modified by WebReports tags such as INCLUDEIF.

Most of the options for this sub-tag can only be used in the WebReport’s row section;
however, the “NOTFIRSTITEM” AND “FIRSTITEM” options allow a delimiter to be
inserted based on a list that is not created in the row section.

Syntax

RB_CONDROWINSERT:FIRSTROW
This option will output the data only for the first row in the data source.

RB_CONDROWINSERT:NOT:FIRSTROW
This option will output the data for any row in the data source besides the first row.

RB_CONDROWINSERT:LASTROW
This option will output the data only for the last row in the data source.

RB_CONDROWINSERT:NOT:LASTROW
This option will output the data for any row in the data source besides the last row.

RB_CONDROWINSERT:NOTFIRSTITEM
Used to specify whether a comma should be added before a list item, typically outside
of a row section.

RB_CONDROWINSERT:FIRSTITEM
Determines whether the tag data should be inserted as the first item in the list.

RB_CONDROWINSERT:FIRSTITEM:<list id>
These options are used outside of a row section and are used to determine whether the tag
data should be inserted based on whether they are the first item in the list or not. Most
commonly the NOTFIRSTITEM option will be used to specify whether a comma should be
added before a list item.
The optional “list Id” can be any unique string, and is used to identify a particular list of
items, allowing for multiple separate lists.

Ravenblack Products
Enhanced Sub-tag Suite Date: 2025-03-04

1.3.3(3)

Page 8

Examples:

Syntax (in row section) Output
[LL_REPTAG=DATAID /][LL_REPTAG_","
RB_CONDROWINSERT:notLastRow /]

12345,12346,12347

[LL_REPTAG_","
RB_CONDROWINSERT:notFirstRow /][LL_REPTAG=DATAID /]

12345,12346,12347

Syntax (not in row section) Output

[LL_REPTAG_"," RB_CONDROWINSERT:notFirstItem /]{data1}
[LL_REPTAG_"," RB_CONDROWINSERT:notFirstItem /]{data2}
[LL_REPTAG_"," RB_CONDROWINSERT:notFirstItem /]{data3}

{data1},{data2},{data3}

RB_DECODE
The RB_DECODE sub-tag works in a similar way to the existing DECODE sub-tag but with
some added features that allow matching based on comparison operators (e.g. <=, <, >, >=) as
well as type testing such as “isNumber” and “IN” testing for lists and strings.

Like DECODE, the basic algorithm is that the tag data value is tested against 1 or more
matches. If one of the match conditions is met, then the original value is replaced with a
specified new value. If there is a single parameter at the end of a list of pairs, that is assumed
to be a default value. If there is no match and no default value, the original value is returned.
If there is more than one matching condition, the first match value pair will be used.

Note: Like the standard DECODE sub-tag any string matching or comparisons are case-
sensitive.

Syntax
RB_DECODE:<match>:<newvalue>[:additional pairs]:[optional default]
This is the simplest usage (which could also be managed by DECODE).

Example: Simple match with case sensitivity

Syntax Return Value
[LL_REPTAG_'snickers1'
RB_Decode:snickers1:chocolate:Snickers1:nougat /]

chocolate

[LL_REPTAG_'SnickersCandy'
RB_Decode:snickers1:chocolate:Snickers1:nougat /]

SnickersCandy

Example: Default Value

Syntax Return Value
[LL_REPTAG_'9'
RB_DECODE:5:five:6:six:7:seven:8:eight:noMatch /]

noMatch

Ravenblack Products
Enhanced Sub-tag Suite Date: 2025-03-04

1.3.3(3)

Page 9

RB_DECODE:<operator>:<newvalue>
Unlike DECODE this sub-tag allows operators, that are used to compare the tag data with
specified match values. These operators use an ‘at’ (@) sign.

Operator Description
@=X or @==X Equal to the match value
@<X Less than the match value
@>X Greater than the match value
@<=X Less than or equal to the match value
@>=X Greater than or equal to the match value
@!X or @!=X Not equal to the match value

As noted above, using comparison operators means that there can be more than one possible
match in the list of possible matches. Note that processing of the comparison list stops with
the first comparison that matches the data value.

Example: Comparison operators with multiple matches

 Return Value
[LL_REPTAG_'10' rb_decode:@<=10:'1-10':
@<=100:'LESS THAN 100':3digits /]

1-10

[LL_REPTAG_'10' rb_decode:@<100:'LESS THAN 100':
@<=10:'1-10':3digits /]

LESS THAN 100

RB_DECODE:<function>:<newvalue>
In addition to operators, functions can also be used to compare data values with specified
match values. NOTE: normal DECODE matches are case sensitive. Some of the functions
below are case insensitive (as indicated).

Function Description
@isnumber Checks if data value is a number
@isnotnumber Checks if data value is not a number
@isnull Checks if data value is null (Accepted NULL values: ' ', " ", ?, null, NULL)
@isnotnull Checks if data value is not null
@isinlist Checks if data value is in a specified list (case insensitive)
@isnotinlist
@isinstring
@isnotinstring

Checks if data value is NOT in a specified list (case insensitive)
Checks if the data value is found in a specified string (case insensitive)
Checks if the data value is NOT found in a specified string (case
insensitive)

Ravenblack Products
Enhanced Sub-tag Suite Date: 2025-03-04

1.3.3(3)

Page 10

Example:

Function Example Return
Value

@isnumber Checks if data value is a number

[LL_REPTAG_'35'
rb_decode:@isnumber:True:False /]

True

@isnotnumber Checks if data value is not a number True

[LL_REPTAG_'abc'
rb_decode:@isNotNumber:True:False /]

@isnull Checks if data value is null.
(Accepted NULL values are: ' ', " ", ?, null, NULL)

[LL_REPTAG_""
rb_decode:@isNull:True:False /]

True

@isnotnull Checks if data value is not null

[LL_REPTAG_'null' rb_decode:@isNotNull:True:False
/]

False

@isinlist Checks if data value is in a specified list (case insensitive)

[LL_REPTAG_'skittles'
RB_DECODE:@isInList{'skittles','snickers', 'mars
bar'}:Candy:Fruit /]

Candy

[LL_REPTAG_'SKITTLES'
RB_DECODE:@isInList{'skittles','snickers', 'mars
bar'}:Candy:Fruit /]

Fruit

[LL_REPTAG_'skittles'
RB_DECODE:@isInList[LL_REPTAG_{'skittles',
'snickers'} /]:Candy:Fruit /]

Candy

@isnotinlist Checks if data value is NOT in a specified list (case insensitive)

[LL_REPTAG_'apple' RB_DECODE:@isNotInList{'skittles',
'snickers','mars bar'}:Fruit:Candy /]

Fruit

Ravenblack Products
Enhanced Sub-tag Suite Date: 2025-03-04

1.3.3(3)

Page 11

@isinstring Checks if the data value is found in a specified string (case insensitive)

[LL_REPTAG_'SKITTLES'
RB_DECODE:@isInString[LL_REPTAG_'skittles snickers mars bar'
/]:Candy:Fruit /]

Candy

@isnotinstring Checks if the data value is NOT found in a specified string
(case insensitive)

Candy

[LL_REPTAG_'MARS BAR'
RB_DECODE:@isNotInString[LL_REPTAG_'skittles
snickers mars bar' /]:Fruit:Candy /]

Note that the last examples of isinlist and the last example of isinstring each show that a list
or string value can be replaced by any data tag, as can the entire parameter.

RB_FORCETYPE
This sub-tag forces Oscript types in string form, into their native types. This is useful in some
scenarios where other sub-tags are not detecting types correctly or for sub-tags that expect a
native sub-type rather than a string version of that type. It can also be used to force a native
type into a string.

Syntax
RB_FORCETYPE

RB_FORCETYPE:forcestring

RB_GETTEXT
This sub-tag is an extension of the existing OpenText, GETTEXT sub-tag. It provides 2
additional features above the existing sub-tag: specifically, it allows text to be retrieved for
any version of the specified object, and it supports a parameter that specifies an ESCAPE
format. This escape parameter only currently supports JSON. (Note, This JSON format is
designed to overcome a bug in the Content Server WEB.EscapeJSON where a carriage return
can be lost if it is the final character).

Syntax
The RB_GETTEXT sub-tag supports one or two parameters

Ravenblack Products
Enhanced Sub-tag Suite Date: 2025-03-04

1.3.3(3)

Page 12

RB_GETTEXT:[version number]

RB_GETTEXT:[escape type]

RB_GETTEXT:[version number]:[escape type]
Escape types: JSON

RB_GETUPLOADCONTENT
This sub-tag can be used to extract content from an incoming request where a file has been
selected for upload from the browser client (using the HTML Form Input element:
Type="File"). Alternatively, the request could be built using Javascript and the FormData
object to pass files to this sub-tag.

The data tag provides a string specifying the name of the file input element to use.

Example:
Firstly an HTML file needs to provide the user with the ability to browse for a file. In this
example some HTML has been built to allow a user to select a file. This example uses
WebReport tags/sub-tags to make it easier to “run” the target WebReport that will contain the
UPLOADCONTENT sub-tag.

<FORM NAME=myForm ACTION="[LL_reptag_urlprefix /]" METHOD="post"
ENCTYPE="multipart/form-data">

[LL_REPTAG_$inputWR LLURL:REPORT URLTOPOST /]

Select a file to upload: <INPUT NAME=inputFile TYPE="FILE" VALUE="">

<INPUT TYPE=submit VALUE="Upload file. ">

</FORM>

After processing, the WebReport syntax would result in the following HTML snippet:

<FORM NAME=myForm ACTION="/cs_rbts1/cs.exe" METHOD="post"
 ENCTYPE="multipart/form-data">
<INPUT TYPE="HIDDEN" NAME="func" VALUE="ll">
<INPUT TYPE="HIDDEN" NAME="objId" VALUE="1287010">
<INPUT TYPE="HIDDEN" NAME="objAction" VALUE="RunReport">
Select a file to upload: <INPUT NAME=inputFile TYPE="FILE" VALUE="">
<INPUT TYPE=submit VALUE="Upload file">
</FORM>

Using this example, when the user has browsed for a file, selected it, and pressed the Upload
File button, the WebReport referenced by: _$inputWR (DataID 1287010) will be run. In this
WebReport, the RB_GETUPLOADCONTENT sub-tag can be used like this:

[LL_REPTAG_"inputFile" RB_GETUPLOADCONTENT SETVAR:fileSource /]

Note, this sub-tag is only designed to return text-based content (stored in the variable
“fileSource” in this example. See RB_FILEACTION:UPLOAD for more capability related to
uploading files from the browser.

Ravenblack Products
Enhanced Sub-tag Suite Date: 2025-03-04

1.3.3(3)

Page 13

RB_JSONBUILD
The RB_JSONBUILD sub-tag creates JSON structures according to the fields specified.
Some general notes are:

• Any opening or closing syntax (where needed) is handled by the sub-tag, i.e. there is
no need to specify when an object or array has been started or ended.

• No quotes, commas or colons (as related to JSON) are required. The syntax required
is only based on standard WebReports sub-tag syntax.

• For incrementally building up multiple, nested objects, the output of this tag should be
assigned to a variable (SETVAR sub-tag) and then used as the input for subsequent
uses of RB_JSONBUILD.

• Where objects are being nested, it is usually easiest to build the sub-object first and
then add it to the larger object. It is also possible to nest syntax.

• By default, string values will be JSON escaped unless the ESCAPEJSON option is
used.

Syntax
RB_JSONBUILD OBJECT:<name>:<value>[:optional fields]
This syntax is used to build a JSON object by specifying one or more name value pairs.

Example:
[LL_REPTAG_'' RB_JSONBuild:object:fruit:apple setVar:fruitList /]

Following this syntax, the variable fruitList would contain:
 {"fruit":"apple"}

Example: Adding fields to an existing object
[LL_REPTAG_!fruitList
RB_JSONBuild:object:color:"Light Green" setVar:fruitList /]

Following this syntax, the variable fruitList would contain:
{ "fruit":"apple",

"color":"Light Green"
}

Example: Multiple fields specified
[LL_REPTAG_''
RB_JSONBuild:object:fruit:apple:color:"Light Green" setVar:fruitList /]

This example is equivalent to the previous 2 examples.

Ravenblack Products
Enhanced Sub-tag Suite Date: 2025-03-04

1.3.3(3)

Page 14

Optional fields:
NOESCAPE - This option is used to prevent string values from being automatically JSON
escaped.

FORCESTRING - This option forces quotes to be wrapped around any value. This can be
particularly useful for data values that are numeric, but required to be strings. For example, if
this sub-tag is being applied to a data column that is primarily made up of string values, but
where some string values may consist of only numeric digits, the default behaviour is to make
the value an integer (no-quotes). FORCESTRING ensures that the value inserted into an
object is quoted regardless of the type detected.

Note that these options can only be used with a single object being specified.

RB_JSONBUILD ARRAY:<item1>:<items1-n>
This syntax is used to create JSON arrays using one or more items passed as parameters.
These items can be simple data types (e.g. strings, integers), or more complex items such as
JSON Objects or Arrays.

Example:

[LL_REPTAG_''
RB_JSONBuild:ARRAY:Orange:Mango:"Water Melon" setVar:fruitList /]

Following this syntax, the variable fruitList would contain:
["Orange","Mango","Water Melon"]

As with the OBJECT option, this syntax allows incremental building.

Example:
[LL_REPTAG_''
RB_JSONBuild:ARRAY:Apple:Pear setVar:fruitList /]

Following this syntax, the variable fruitList would contain:
["Orange","Mango","Water Melon","Apple","Pear"]

Optional fields:
NOESCAPE - This option is used to prevent strings being added to an array from being
automatically JSON escaped.

FORCESTRING - This option forces quotes to be wrapped around any element. This can be
particularly useful for data values that are numeric, but required to be strings. For example, if
this sub-tag is being applied to a data column that is primarily made up of string values, but
where some string values may consist of only numeric digits, the default behaviour is to make
the value an integer (no-quotes). FORCESTRING ensures that the element inserted into an
array is quoted regardless of the type detected.

Ravenblack Products
Enhanced Sub-tag Suite Date: 2025-03-04

1.3.3(3)

Page 15

CATENATE – This option is used when it is required to concatenate two arrays rather than
adding a second array as an element of the first array (default behaviour).
This option is added after the ARRAY option, e.g:

RB_JSONBuild:ARRAY:CATENATE

Note that all these options can only be used when a single array object has been specified.

RB_LIST
The RB_List sub-tag provide additional features to use for working with Content Server
Oscript lists. All of the features in the original LIST sub-tag are supported, but this new
version also supports a multitude of List related features and options to match the typical
ability found in other languages that support arrays.
This sub-tag is also similar to the ASSOCACTION sub-tag in that it accepts an Oscript
structure (a list in this case) and after performing most operations, it returns a new version of
the structure.
For further information about the basic LIST functionality please refer to the existing online
help.

Syntax
Unless otherwise specified, each action for this sub-tag expect a list from the data tag. If the
data tag is empty, a blank list is assumed as the input to this sub-tag.
For some actions we have provided more than one action as some developers may be more
used to particular terminologies.

RB_LIST:ADD:<newvalue> /]

RB_LIST:PUSH:<newvalue> /]
These two actions do the same thing. For any passed list, these actions will add a specified
new value to the list. The updates list is returned. Note that a new value will be added
regardless of whether the value already exists in the list. See the SETADD action if only
unique values are required in the list.

Example

Initial [LL_REPTAG_{'apple','grape','orange','pear'} SETVAR:list /]

Syntax [LL_REPTAG_!list RB_LIST:PUSH:'grape' /]

Result {'apple','grape','orange','pear','grape'}

The new value is added to the last position even though it is a duplicate.

Ravenblack Products
Enhanced Sub-tag Suite Date: 2025-03-04

1.3.3(3)

Page 16

RB_LIST:CONCATENATE:<list> /]
This action allows another list to be concatenated to the one specified in the data tag. The
newly combined list is returned. This action differs from SETUNION in that it simply adds
the second list to the end of the first list. If any values in the second list are duplicates of
values in the first, they are still retained whereas SETUNION only maintains unique values.

Example

Initial [LL_REPTAG_{'apple','grape','orange','pear'} SETVAR:list1 /]
[LL_REPTAG_{'blueberry','grape'} SETVAR:list2 /]

Syntax [LL_REPTAG_!list1 RB_LIST:CONCATENATE:[LL_REPTAG_!list2 /]

Result {'apple','grape','orange','pear','blueberry','grape'}

All values in the second list are added to the first list, including duplicates.

RB_LIST:INSERT:<index>:<newalue> /]
This action allows a new value to be added at a given index in a passed list. The index counts
from 1, and the new value is inserted at that position and all existing elements from that index
to the end of the list are added after the new value. This action allows duplicate values in the
list.

Example

Initial [LL_REPTAG_{'apple','grape','orange','pear'} SETVAR:list /]

Syntax [LL_REPTAG_!list RB_LIST:INSERT:3:blueberry /]

New List {'apple','grape','blueberry','orange','pear'}

The new value is added to the third position (counting from 1 to 3).

RB_LIST:POP:[variableName] /]
This action performs the opposite to the PUSH action. Given a list, the last item in the list is
removed, and the newly reduced list is returned. If a variable name has been provided, then a
variable is created with that name to hold the newly popped value.

Example

Initial [LL_REPTAG_{'apple','grape','orange','pear'} SETVAR:list /]

Syntax [LL_REPTAG_!list RB_LIST:POP:result /]

New List {'apple','grape','orange' }

New Var [LL_REPTAG_!result /] = pear

The last item in the list is removed, and assigned to the variable: result. Note, any
variable name can be used.

Ravenblack Products
Enhanced Sub-tag Suite Date: 2025-03-04

1.3.3(3)

Page 17

RB_LIST:REMOVE:<value>[:usecase] /]
This action removes a value from anywhere in a given list if a match is found and the reduced
list is returned. If the specified value exists more than once in the list, only the first item is
removed. By default the matching for removal is case insensitive. Specifying true as the
optional “use case” parameter will make the matching process case sensitive.

Example

Initial [LL_REPTAG_{'apple','pear','grape','orange','pear'} SETVAR:list /]

Syntax [LL_REPTAG_!list RB_LIST:REMOVE:PEAR /]

New List {'apple','grape','blueberry','orange','pear'}

The first ‘pear’ occurrence in the list is removed, leaving the second one. As the value was
specified as PEAR (upper case), the list would remain unchanged if the optional usecase
argument had been set to true. E.g. …RB_LIST:REMOVE:PEAR:true

RB_LIST:REMOVEALL:<value>[:usecase] /]
This action is similar to REMOVE, except that all matches for the specified value will be
removed rather than just the first one. As with remove, this action defaults to case insensitive
behaviour.

Example

Initial [LL_REPTAG_{'apple','pear','grape','orange','pear'} SETVAR:list /]

Syntax [LL_REPTAG_!list RB_LIST:REMOVEALL:PEAR /]

New List {'apple','grape','blueberry','orange'}

Both ‘pear’ occurrences in the list are removed. As the value was specified as PEAR (upper
case), the list would remain unchanged if the optional usecase argument had been set to true.
E.g. …RB_LIST:REMOVEALL:PEAR:true

RB_LIST:SETADD:<value> /]
This action adds a value to the end of this list, only if that value does not already exist in the
list. This differs from the ADD action which adds values even if they are duplicates.

Example

Initial [LL_REPTAG_{'apple','grape','orange','pear'} SETVAR:list /]

Syntax 1.[LL_REPTAG_!list RB_LIST:SETADD:'grape' /]
2.[LL_REPTAG_!list RB_LIST:SETADD:'blueberry' /]

ResultS 1.{'apple','grape','orange','pear'}
2.{'apple','grape','orange','pear','blueberry'}

1. The value “grape” was not added as it would be a duplicate. 2. “blueberry” was
added as it was unique.

Ravenblack Products
Enhanced Sub-tag Suite Date: 2025-03-04

1.3.3(3)

Page 18

RB_LIST:SETREMOVE:<value> /]
This action removes any occurrence of the specified value. This is equivalent to the
REMOVEALL action except that it is always case sensitive. For larger operations, where
case insensitivity is not required, this action should provide slightly better performance than
REMOVEALL.

RB_LIST:SETUNION:<secondlist> /]
This ACTION concatenates two lists, but only returns unique values from the two lists, i.e.
there will be no duplicates in the resulting list.

Example

Initial [LL_REPTAG_{'apple','grape','orange','pear'} SETVAR:list1 /]
[LL_REPTAG_{'blueberry','grape'} SETVAR:list2 /]

Syntax [LL_REPTAG_!list1 RB_LIST:CONCATENATE:[LL_REPTAG_!list2 /]

Result {'apple','grape','orange','pear','blueberry'}

All unique values in the second list are added to the first list (no duplicates).

RB_LIST:SHIFT:[variablename] /]
This action represents a “left shift” of the values in the array, essentially performing a similar
action to POP, but removing the first item in the array. If a variable name is specified, the
“shifted” value is stored in a variable with that name.

Example

Initial [LL_REPTAG_{'apple','grape','orange','pear'} SETVAR:list /]

Syntax [LL_REPTAG_!list RB_LIST:SHIFT:result /]

New List {'grape','orange','pear'}

New Var [LL_REPTAG_!result /] = apple

The last item in the list is removed, and assigned to the variable: result. Note, any
variable name can be used.

RB_LIST:UNSHIFT:<value> /]
This action performs the opposite of the SHIFT action, i.e. it adds an item to the front of the
list. It is also equivalent to the PUSH action except that it adds an item to the front of the list
rather than the end.

Example

Initial [LL_REPTAG_{'apple','grape','orange','pear'} SETVAR:list /]

Syntax [LL_REPTAG_!list RB_LIST:SHIFT:'grape' /]

Result {'grape','apple','grape','orange','pear'}

The new value is added to the last position even though it is a duplicate.

Ravenblack Products
Enhanced Sub-tag Suite Date: 2025-03-04

1.3.3(3)

Page 19

RB_LOG
The RB_LOG sub-tag provides a way for WebReports developers to produce application
specific log files (outside of the normal thread logs). This sub-tag allows a developer to create
customized messages to be included in these customized log files, either for debugging and
support or to supplement an application.

Configuration

Naming
Log files will be named as follows: <fileName>_<wrid>_<yyyy-mm-dd_hh.mm>,
where:

• <fileName> is a unique name specified by the data tag. This field is mandatory as
it serves as an identifier to reference a given file. Note, it is possible to have spaces in
the file name.

• <wrid> is the ID of the WebReport that includes the RB_LOG subtag.
• <yyyy-mm-dd_hh.mm> is the date and time when the file was first opened.

Location
Log files will be generated in the following path by default:
...\logs\ContentIntelligence_RBlogs

It is also possible to set a different path via configuration or by setting a variable in the
application. To set a different default via an INI file, a setting can be added to either the
ravenblack.ini, or the opentext.ini files. The setting in ravenblack.ini should be made under
[RBSubtagSuite], and if the opentext.ini is used, the setting should be made under the
[WebReports]section. In either case the setting key is RB_LOG_FOLDER.

Opentext.ini example:
[WebReports]
……
RB_LOG_FOLDER=DebugTest1

Ravenblack.ini example:
[RBSubtagSuite]
RB_LOG_FOLDER=DebugTest1

In the above examples, the new log folder would be created as
C:\OPENTEXT\<instance_name>\logs\DebugTest1_RBlogs

Note: After doing this, remember to restart the Content Server service for the configuration to
take effect.

Ravenblack Products
Enhanced Sub-tag Suite Date: 2025-03-04

1.3.3(3)

Page 20

Setting the log path in the application
Sometimes it is desirable to set a logfile path on a per application basis. This is done by
setting a variable named RB_LOG_FOLDER to the path name.

Examples:
[LL_REPTAG_$MyApplicationNAME SETVAR:RB_LOG_FOLDER /]
[LL_REPTAG_"Security Violations" SETVAR:RB_LOG_FOLDER /]

Note: RB_LOG_FOLDER is a fixed variable name that must be used to set a new log path.
The data tag provides the actual path that will be used.

Syntax
The RB_LOG sub-tag includes a number of syntax variations that allows a developer to
customize their log files.

RB_LOG:OPEN
This syntax opens a file for writing.

In cases where there are a lot of transactions, this tag enables the log file to remain open until
closing. This is to remove the need to open and close the log file after each WRITE action.

This OPEN action generates a status change message in the log file:
YYYY/MM/DD/:HH:MM ** Logfile opened **

Behaviour

If OPEN is initiated on an already open file, it will return a quiet error.

Note: A quiet error means that an error marker is set internally but no error message is
returned. To force a full error message, add the ONERROR sub-tag to force a verbose error
message to be returned.

RB_LOG:WRITE:[outputString]
This syntax writes lines of information to the log file as specified in the WebReport.

In addition to any automatic information generated, it accepts additional parameters to create
a unique string to output to the log file.

It is possible to specify a string with markers in it followed by one or more data fields. This is
equivalent to the OScript STR.Format function, or the printf function in other languages like
C or Java.

Example:
RB_LOG:WRITE:"Performed %1 action on
DataId:%2":[LL_REPTAG_&action /]: [LL_REPTAG=DataId /]"

The %1 marker will be replaced by the value returned by the &action tag, and the %2
marker will be replaced by the value returned by the DataId (column reference) data tag.

Ravenblack Products
Enhanced Sub-tag Suite Date: 2025-03-04

1.3.3(3)

Page 21

Behaviour

Even if a file doesn’t call the OPEN sub-tag in the code, WRITE will automatically open,
write, and close the file. If the file is already open, the WRITE action will not open or close
the file.

RB_LOG:CLOSE:[outputString]
This syntax closes the log file after writing. This should be used in conjunction with the OPEN
sub-tag.

This action also accepts (optionally) additional string parameters to WRITE a unique string to
the log file prior to the close operation.

By default, this action generates this status change message in the log file:
YYYY/MM/DD/:HH:MM ** Logfile closed **

WebReports Variable Interactions
Any actions performed by RB_LOG create a WebReports variable using this naming
convention: RB_log|<fileName>.

Example:

Using the syntax [LL_REPTAG_'FILE1' RB_LOG:OPEN /],
a WebReports variable is created, equivalent to SETVAR:RB_LOG|FILE1

This could be viewed with a variable tag, e.g. [LL_REPTAG_!RB_LOG|FILE1 /].
Moreover, the content of this variable could be operated on using any appropriate sub-tags.

Additionally, using the CURRENTVAL sub-tag following RB_LOG will return the current
contents of the variable.

These log file variables contain an OScript ASSOC structure, thus the ASSOC sub-tag may be
useful to interpret this variable. The ASSOC currently includes the following components:

FileVar (the file variable created), LogFile (the full file
path), FileStatus (open/closed). E.g.:
A<1,?,'fileStatus'='OPEN','fileVar'=U<File(-
107)=xxxxxx>,'LogFile'='C:/……./logs/ContentIntelligence_RBlogs
/logfile1_885992_2020-08-16_23.34.txt'>

RB_RUNSEARCH
The RB_RunSearch sub-tag provides the ability to execute Content Server searches without
the need to create a saved search query.

Ravenblack Products
Enhanced Sub-tag Suite Date: 2025-03-04

1.3.3(3)

Page 22

Syntax
The data tag is generally used to specify an LQL based search term to be run by the search.
(LQL is explained in some depth within the Content Server search help.) It is also possible to
have a blank data tag and specify search terms using parameters passed to the sub-tag.

RB_RunSearch
This simple syntax will simply run a search using a set of one or more LQL terms specified in
the data tag.

RB_RunSearch:<search terms>
This simple syntax is equivalent to the previous syntax, but the search terms are specified as
an argument instead of via the data tag which is blank in this example.

RB_RunSearch:LQL_term1:<search terms>:[search options]
This syntax is also equivalent to the previous two examples. In the previous examples,
LQL_term1 is assumed by default. Note: only one LQL parameter is currently supported but
this term can include multiple search clauses and behaves like the full text search box in the
search interface.

In addition to text or LQL search terms, the following options are supported:
• SLICE: (ENTERPRISE, ENTERPRISEALLVERSIONS)
• STARTROW: (1-n)
• MAXROWS: (1-n)
• OUTPUTMODE:

o CONTENTS: Returns a RecArray containing all the results of the search.
o COUNTS: Returns an Assoc with actualRows and TotalRows fields.
o ALL: Returns an Assoc with the contents RecArray and count fields.

Ravenblack Products
Enhanced Sub-tag Suite Date: 2025-03-04

1.3.3(3)

Page 23

Example:
[LL_REPTAG_'[qlregion "OTSubType"] qlrange "[LL_REPTAG_&objectType /]"
AND "[LL_REPTAG_&searchTerm /]" AND "Ravenblack"'
RB_RUNSEARCH:SLICE:ENTERPRISE:MAXROWS:100 /]

Assuming that &searchTerm = ‘TEST’ and &objectType=30303, this search would be
equivalent to the search query shown below.

RB_SAVEERROR
The RB_SAVEERROR sub-tag allows an error message to be saved to a variable during the
execution of a sub-tag. This can be used where allowing a sub-tag to return an error message
could disrupt syntax or break the logic flow. It can also be used to aid in detecting and
catching error messages as opposed to normal data being returned. The saved error message
can then be used elsewhere in the reportview.

{
 "data:"[LL_REPTAG_$Obj NODEINFO:NAME RB_SAVEERROR:errorMsg /] /]",
 "error":[LL_REPTAG_!errorMsg DECODE:'':false:true /],
 "errorMsg:"[LL_REPTAG_!errorMsg /]"}
}

In this example, if the NODEINFO:NAME sub-tag returned an error, the data field would
resolve to a blank string but the variable “errorMsg” would now contain this error. This error
is then used appropriately to set an error field to be returned in the JSON structure.

Syntax
The RB_SAVEERROR sub-tag only currently supports one parameter with the variable name
to use for storing the error.

RB_SAVEERROR:<variable name>
Note that this sub-tag currently only stores the most recent error message.

Ravenblack Products
Enhanced Sub-tag Suite Date: 2025-03-04

1.3.3(3)

Page 24

RB_SERVERNAME
The RB_SERVERNAME sub-tag returns the name of the current server.

Syntax
This sub-tag supports three different formats:

RB_SERVERNAME
RB_SERVERNAME:hostname
Both of these variants return the host name as stored for the server running the Content Server
instance - using Oscript System.hostName().

RB_SERVERNAME:iniserver
Returns the server name as stored in the INI file under [general].

RB_SERVERNAME:displayname
This variant returns a longer, more descriptive server name as configured and stored in the
opentext.ini file under [general] – displayservername.

RB_SETMULTIVARS
The RB_SETMULTIVARS sub-tag provides a quick way to convert multiple pieces of data
into variables. The data to save in variables is stored in data structures such as An ASSOC or
a LIST.

Syntax
The RB_SETMULTIVARS sub-tag expects either a Content Server list, or an ASSOC in the
data tag.

List structure- Name Value Pairs:
If the specified list has name value pairs (names are odd numbered items, values are every
second item) then the syntax required is simply this:

RB_SETMULTIVARS:LIST

List structure- only values:
If the specified list only has data values then the sub-tag parameters should specify the
variable names like this:

RB_SETMULTIVARS:LIST:<varname1>:<varname2>:<varname3>

List structure- only values, auto variable naming:
If the specified list only has data values the autolist allows a generic string to be used with
automatic numbering. Only the string prefix is required:

RB_SETMULTIVARS:LIST:autolist:<prefix>

Ravenblack Products
Enhanced Sub-tag Suite Date: 2025-03-04

1.3.3(3)

Page 25

Assoc structure:
If an ASSOC structure has been provided, then the name value pairs in the ASSOC are used.

RB_SETMULTIVARS:ASSOC

Assoc structure – swapping name value pairs:
If an ASSOC structure has been provided then this option uses the name value pairs in the
Assoc, but the names and values are swapped so the Assoc values become the variable names
and the Assoc names become the variable values.

RB_SETMULTIVARS:ASSOC:swapkeys

String value – setting multiple variables:
This variant of the sub-tag is slightly different than the others. Using the singlevalue option
allows a single string value (from the data tag) to be set for multiple specified variable names.
This can be useful to initialize a set of variables to a common value.

RB_SETMULTIVARS:ASSOC:singlevalue:<varname1>:<varname2>:…

Examples:
Data Sub-tag Syntax Output

{10, 11, 12}

RB_SETMULTIVARS:list:
FirstVal:SecondVal:ThirdVal /]

[LL_REPTAG_!FirstVal /]-
[LL_REPTAG_!SecondVal /]-
[LL_REPTAG_!ThirdVal /]

10-11-
12

{'fruit','apple,

'color','green'}

RB_SETMULTIVARS:list /]

We have a [LL_REPTAG_!color /]
[LL_REPTAG_!fruit /].

We have
a green
apple.

{10, 11, 12}

RB_SETMULTIVARS:autolist:var /]

[LL_REPTAG_!var1 /]-[LL_REPTAG_!var2 /]-
[LL_REPTAG_!var3 /]

10-11-
12

A<1,?,'fruit'='Kiwi',

'Color'='Green'>

RB_SETMULTIVARS:ASSOC /]

The [LL_REPTAG_!fruit /] is
[LL_REPTAG_!color /].

The
Kiwi is
green.

A<1,?,'fruit'='Kiwi',

'Color'='Green'>

RB_SETMULTIVARS:ASSOC:swapvalues /]

Kiwi is a [LL_REPTAG_!kiwi /] and Green
is a [LL_REPTAG_!Green /].

Kiwi is
a fruit
and
Green
is a
color.

false
RB_SETMULTIVARS:singlevalue:var1:var2 /]

[LL_REPTAG_!var1 /],
[LL_REPTAG_!var2 /]

false,
false

Ravenblack Products
Enhanced Sub-tag Suite Date: 2025-03-04

1.3.3(3)

Page 26

RB_SORT
The RB_SORT sub-tag performs all of the functions of the advanced sort provided by the
[LL_WEBREPORT_SORT /] content control tag. Using this sub-tag essentially makes using
the SORT content control tag redundant. This sub-tag differs slightly from the content control
tag syntax and usage:

• It is only used in the header of the reportview and not the row section. For this reason,
it is advised, when using the RB_SORT sub-tag to add comments in the top of the
row section to advise other developers that a SORT is being executed in the header
section. Additionally the RB_SORT:RUNSORT action (that actually executes the
sort) could be placed just before the _STARTROW tag.

• RB_SORT:DEFINE action can be used repeatedly to define multiple sort criteria
prior to running a sort.

• It can be used in IF statements or FOR loops allowing sort criteria to be compiled
conditionally or cumulatively based on logic.

• The actual sort execution is triggered by RB_SORT: RUNSORT prior to the row
section executing.

Syntax
The data tag is left blank when using this sub-tag.

RB_SORT:DEFINE
This action is used to define either the parameter names in the request that the SORT responds
to, or the pre-defined keys where a simple key is associated with complex tag syntax. More
information on WebReports sorting using @PARMNAMES and @PREDEFKEY directives
can be found in the standard WebReports help for Advanced Sorting.

• A DEFINE action can include either of the 2 directives (@PARMNAMES or
@PREDEFKEY) or both.

• Each directive can include multiple definitions. E.g. a single @PREDEFKEY directive
can include several REF/PARM pairs.

• Multiple DEFINE actions can be used to cumulatively build up a complex SORT
definition that is not executed until :RUNSORT is executed.

There are two different syntax methods allowed for this action, one that closely matches the
equivalent content control tag, and one that is more efficient (from a typing point of view) , and
that matches other sub-tags.

RB_SORT:DEFINE:@PARMNAMES:<sortcol & dircol >
Method 1
:@PARMNAMES:SORTCOL:<sortcol-name>:DIRCOL:<dircol-name>

Method 2
:@PARMNAMES:<sortcol-name>:<dircol-name>

Ravenblack Products
Enhanced Sub-tag Suite Date: 2025-03-04

1.3.3(3)

Page 27

RB_SORT:DEFINE:@PREDEFKEY:<refkey & tags>
Method 1
:@ PREDEFKEY:REF:<reference-key>:PARM:<tags/sub-tag parms>

Method 2
:@ PREDEFKEY:<reference-key>:<tags/sub-tag parms>

Tags/sub-tag parms syntax:
The syntax for a PARM differs slightly from the content control tag version of sort.
Specifically, the [LL_REPTAG piece is left off the front of the data tag, as well as the final /]
closure.

E.g. [LL_REPTAG=DATAID NODEINFO:SIZE /] becomes "=DATAID NODEINFO:SIZE”.
Additionally, any tags being nested within these sort clauses should be quoted if they are
returning strings that could contain colons or spaces.
E.g. if the sort param is something like this:
'=DATAID CAT:<catname>:<attrname>:DISPLAY'

If the cat name and or the attribute name are being generated using additional tags that return
strings, these clauses should be quoted like this:
'=DATAID CAT:"[LL_REPTAG_!colCat /]":"[LL_REPTAG_!item ASSOC:displayname /]":DISPLAY'

See Examples for more examples of this syntax .

RB_SORT:RUNSORT
This action causes the actual sort to execute using all of the parameters that have been
specified by multiple DEFINE actions. This action is always executed prior to processing the
row section and should be placed next to the _STARTROW tag for easier understanding
when examing the WebReport code.

RB_SORT:RESET
This action clears all of the sort parameters that have been defined, in order to start again.
This is not required for a newly executed WebReport and is not normally required.

Ravenblack Products
Enhanced Sub-tag Suite Date: 2025-03-04

1.3.3(3)

Page 28

Examples

Building a sort using using a FOR LOOP

[// using method 1 (SORTCOL AND DIRCOL field names are included)
[LL_REPTAG_'' RB_SORT:DEFINE:@PARMNAMES:SORTCOL:CatSort:DIRCOL:Direction /]

[// Using method 2, PARM and REFKEY field names are not included.
[LL_REPTAG_'' RB_SORT:DEFINE:@PREDEFKEY:SIZE:"=DATAID NODEINFO:SIZE" /]

[LL_WEBREPORT_FOR DATA:[LL_REPTAG_!colcat CATINFO:DEFINITION VALUES /] VAR:item /]
 [LL_REPTAG_'' RB_SORT:DEFINE:@PREDEFKEY:cat[LL_REPTAG_!item ASSOC:ID /]:
'=DATAID CAT:"[LL_REPTAG_!colCat /]":"[LL_REPTAG_!item ASSOC:DISPLAYNAME /]":DISPLAY' /]
[LL_WEBREPORT_ENDFOR /]

. . .

[LL_REPTAG_'' RB_SORT:RUNSORT /] [// Execute the defined sort
[LL_WEBREPORT_STARTROW /]
. . .

This somewhat complicated example illustrates the flexibility of this sub-tag. Different colors
have been used to help with clarity.

• The blueish color shows all of the syntax that is specifically related to the RB_SORT
sub-tag.

• The redish color shows the syntax associated with a PARM for a predefined key. Note
that the [LL_REPTAG prefix is excluded from this syntax as is the final /]. Also note
that any tags being nested within this syntax (that resolve to text strings) have been
quoted.

• In the first section of this example, the SORT code is instructed to respond to the
parameter called “CatSort” to determine which column to sort with, and the parameter
called “Direction” to determine which direction to use for sorting (ASC/DESC).

• In the second section of this example, a single key is defined called “size”. If the
request includes &catsort=size, then the WebReport would sort using the
NODEINFO:SIZE value for each item in the data source.

• In the third section or this example, multiple predefined keys are created in a for loop.
This example loops through all the attributes in a category, creating unique keys
associated with specific attributes.

More information about this specific example:
• A unique key (REF) is built using “cat” and the ID of the attribute.
• The tag syntax to use for sorting (PARM) looks up the value for each specific attribute

when a sort is executed.
• This (real world) example was complimented by code that dynamically built columns

for display using the same convention for column names (e.g. cat<attribute id>).

Ravenblack Products
Enhanced Sub-tag Suite Date: 2025-03-04

1.3.3(3)

Page 29

RB_STRFORMAT
The RB_STRFORMAT tag provides a string formatting function that is equivalent to the
OScript STR.Format function, or the printf function in other languages like C or Java.

Example:
RB_STRFORMAT:
"Performed %1 action on DataId:%2":
[LL_REPTAG_&action /]:[LL_REPTAG=DataId /]

The %1 marker will be replaced by the value returned by the &action tag, and the %2
marker will be replaced by the value returned by the DataId (column reference) data tag.

RB_SUBTYPECONVERT
This sub-tag overlaps with some standard sub-tags such as NODEINFO and LLURL but
provides a multi-function sub-tag that can covert from three different data inputs to multiple
outputs, one of which includes miscellaneous sub-type properties that are not available in any
other sub-tag.

Syntax
The input type expected from the data tag is determined by one of three “FROM” parameters
as shown below. The output of this sub-tag is determined by one of three “TO” parameters all
the current options are shown in this table.

FROM Parameter TO Default
FROMDATAID,
FROMSUBTYPE
FROMNAME

TONAME
TOSUBTYPE
TOASSOC

The FROM parameter is mandatory, If a TO option is not provided the defaults are as follows:

FROM Parameter TO Default
FROMDATAID,
FROMSUBTYPE

TONAME

FROMNAME TOSUBTYPE

RB_SUBTYPECONVERT:<FROM parameter>:[optional TO parameter]
This is the basic syntax. The following examples show the various FROM and TO parameters
along with examples. All of the FROM examples use the default TO parameter.

Ravenblack Products
Enhanced Sub-tag Suite Date: 2025-03-04

1.3.3(3)

Page 30

RB_SUBTYPECONVERT:FROMSUBTYPE
If a valid sub-type number is specified, this option will lookup the sub-type and return
information as specified by the TO parameter (TONAME by default in this example).

Example:
[LL_REPTAG=Subtype RB_SUBTYPECONVERT:FROMSUBTYPE /]

For a sub-type of 144 this would return: Document

RB_SUBTYPECONVERT:FROMDATAID:
If a valid DataId is specified, this option will look up the correct sub-type and return
information as specified by the TO parameter (TONAME by default in this example).

Example:
[LL_REPTAG=DataId RB_SUBTYPECONVERT:FROMDATAID /]

If the Data Id was for a folder, this would return: Folder

RB_SUBTYPECONVERT:FROMNAME
If a valid subtype name is specified in the data tag, this will lookup the correct sub-type and
return information as specified by the TO parameter (TOSUBTYPE by default in this
example).

Examples:
[LL_REPTAG_'ActiveView' RB_SUBTYPECONVERT:fromname /]
[LL_REPTAG_'Document' RB_SUBTYPECONVERT:fromname /]
[LL_REPTAG_'Folder' RB_SUBTYPECONVERT:fromname /]

30309
144
0

RB_SUBTYPECONVERT:<FROM parameter>:TOSUBTYPE
This TO parameter allows a sub-type number to be returned from either a name or DataId.

RB_SUBTYPECONVERT:<FROM parameter>:TONAME
This TO parameter allows a sub-type value to be converted into the correct sub-type name.

RB_SUBTYPECONVERT: :<FROM parameter>:TOICON
The TOICON parameter uses the sub-type information looked up by the FROM parameter
and returns the server path for the icon associated with that sub-type. Note that for documents
and business workspace objects, a more specific icon can be provided if the FROM parameter
is FROMDATAID.

Ravenblack Products
Enhanced Sub-tag Suite Date: 2025-03-04

1.3.3(3)

Page 31

RB_SUBTYPECONVERT:<FROM parameter>:TOASSOC
The TOASSOC parameter uses the subtype information looked up by the FROM parameter
(FROMSUBTYPE by default in this example) and returns an ASSOC structure with all of the
currently supported information fields for this sub-type. These are currently:

SUBTYPE The sub-type number.
SUBTYPENAME The sub-type name.
ICONPATH The server path for the icon associated with an object type.
ISCONTAINER Returns true if the sub-type object is a container.
HASASSOCIATEDVOLUME Returns true if the sub-type object is a volume and has an

associated workspace. This is true of some volumes like
Projects. (See example below for more explanation.)

ISVOLUME Returns true if the sub-type object is a volume.

Example of volume/associated volume:

[LL_REPTAG_'201'
RB_SUBTYPECONVERT:FROMSUBTYPE:TOASSOC /]

Subtype=201
subtypeName=Project Workspace
iconPath=project/16workspace.gif
isContainer=true
hasAssociatedVolume=false
isVolume=false

[LL_REPTAG_'202'
RB_SUBTYPECONVERT:FROMSUBTYPE:TOASSOC /]

Subtype=202
subtypeName=Project
iconPath=project/16project.gif
isContainer=true
hasAssociatedVolume=true
isVolume=true

This example shows a project and its associated workspace and the values that are returned by
the TOASSOC parameter in each case.

RB_UNIFYEOL
Converts text content so all EOL type characters and combinations are the same. By default,
all EOL characters and combinations will be converted to the OS specific line terminator
string, but an alternative can be passed as a parameter.

Syntax
RB_UNIFYEOL
RB_UNIFYEOL:<EOL string>

Ravenblack Products
Enhanced Sub-tag Suite Date: 2025-03-04

1.3.3(3)

Page 32

RB_UNZIP
Takes the file path for a zip file and unzips the contents to a specified destination.
(In the future this sub-tag will support unzipping files stored in Content Server, and nodes)

Syntax
The data tag should include the directory and file name in a standard file path. Note that some
sub-tags such as RB_FileAction:upload and RB_GetUploadContent return file paths that can
then be used with this sub-tag.

<sourcefile> RB_ Unzip:<destpath>

Ravenblack Products
Enhanced Sub-tag Suite Date: 2025-03-04

1.3.3(3)

Page 33

Data Read/Write Sub-tags
This set of sub-tags provides a variety of levels or data storage and retrieval, ranging from
data base tables (including KINI entries), to server preferences, and even thread-based
storage.
Warning: some of these sub-tags allow access to standard OpenText tables and files such as
the KINI table and the opentext.ini config file. We have made these sub-tags only available to
users with System Administrator privileges, but the developer can create a purpose built
WebReport set to “run-as” an admin type user. These sub-tags provide useful functionality
but require care and attention during development. Partners and or customers can opt out of
deploying these sub-tags if you have any concerns. For application specific storage you
should consider either:

- RB_FormDBRead/Write (custom WebForms tables).
- CSAppsKiniRead/Write (only permits a section defined by a CSAppName).
- RB_RbPrefsRead/Write (Ravenblack.ini dedicated INI file).

RB_CACHEREAD
The RB_CACHEREAD sub-tag is used to return cached data from the built-in caching
system on all Content Server instances. This sub-tag uses the $LLIApi.CacheUtil Oscript
functions. This sub-tag requires a valid cache id so it will normally only be used in
conjunction with the RB_CacheWrite sub-tag which is used to store and update data in the
cache. This corresponding sub-tag will return a cache id that can be stored as required to use
for data recovery from the cache.

Syntax
This sub-tag expects the data tag to specify a valid cache id. The GET parameter is optional
and is only included here for consistency with other sub-tags. Omitting this parameter has no
effect on the behaviour of the sub-tag.

RB_CACHEREAD

RB_CACHEREAD:GET

Both syntax variants return cached data from the Content Server.
The GET parameter in the second format is optional and included for
consistency with other sub-tags; omitting this parameter does not affect
the sub-tag's behavior.

Either of these syntax variants a will return cached data from Content Server.

Ravenblack Products
Enhanced Sub-tag Suite Date: 2025-03-04

1.3.3(3)

Page 34

RB_CACHEWRITE
The RB_CacheWrite sub-tag is used to store data for a specified time period in the built-in
caching system on all Content Server instances. It can also be used to update or delete cache
entries. This sub-tag supports several parameters that control its behaviour as shown below.

Syntax
These are the actions that are supported by this sub-tag. Each action is affected by one or
more options in a name:value format. Some options are mandatory for particular actions as
shown in the table below.

RB_CACHEWRITE:ADD:<option>:<value>….
Adds a brand new data item (specified in the data tag) to the cache. This action may return a
cache Id, or a copy of the data that may include the cache id as a parameter.

RB_CACHEWRITE:UPDATE:<option>:<value>….
Updates an existing cache with data specified in the data tag and may also change the expiry
time for the cache.

RB_CACHEWRITE:TOUCH:<option>:<value>….
Updates the expiry time for the cache without changing the cache data. The data tag is usually
empty for this action as it is not required or used.

RB_CACHEWRITE:DELETE:<option>:<value>….
Deletes an existing cache entry. The data tag is usually empty for this action as it is not
required or used.

Options Function
ReturnType Specifies one of three “return types”:

§ ID: Returns the cache Id.
§ Blank: Returns a blank string.
§ Full: Returns: cacheId and expiryTime in an ASSOC.
§ Data: Returns the data currently in the cache.

Note, if the data being added to the cache has the marker: @cacheid@
included, the marker is replaced with the actual cache Id. The data,
(with any cache Id. replacements), is returned when returntype=data.

CacheId Allows a cache Id to be specified as a parameter. This option is
mandatory for the UPDATE, TOUCH, or DELETE actions.

ExpiryTime Allows an expiry time to be specified as a parameter. By default (if this
option is not used), the expiry time is set to 1 hour.
Typically this option will be specified as an integer followed by a unit
identifier, specifically: sec,secs,min,mins,hour,hours,day,days. If
only a number is provided, then the sub-tag uses seconds as a default.
To specify an indefinite expiry time, a value of -1 can be used.

Ravenblack Products
Enhanced Sub-tag Suite Date: 2025-03-04

1.3.3(3)

Page 35

This table summarizes the various actions and any specific defaults or mandatory options.

Action DEFAULT MANDATORY
ADD RETURNTYPE=ID <data tag>

UPDATE
TOUCH
DELETE

RETURNTYPE=BLANK CACHEID

Examples
Syntax (RB_CACHEWRITE) Result
:UPDATE:cacheid:<cacheid>:expirytime:3600 Updates the specified cache with

new data and also changes the
expiry time to 3,600 seconds (1
hour).

:ADD:returntype:data Creates a new cache populated with
whatever data is passed in the data
tag. This data is passed back
through the sub-tag. If the data had
a ^cacheid^ marker in it, the
marker would be replaced with the
newly created cached Id.

:UPDATE:cacheid:<cacheid>:expirytime:-1 Updates the specified cache with
the data specified in the data tag.
The expiry time is set to an
indefinite period (essentially
permanent).

RB_CSAPPKINIREAD
The RB_CSAPPKINIREAD sub-tag works the same as the RB_KINIREAD sub-tag. It also
reads entries from the KINI table but is exclusively used for Content Server Applications
(CSApps).

Note that for this sub-tag and the CSAppKiniWrite sub-tag, there is a concept of application
“ownership”. If a WebReport was bundled with a CSApp that is installed on your system,
then it is owned by that CSApp and includes a field within its data to recognize this
ownership. For applications being newly built, this data field will not be applied unless you
build the app, uninstall it, and then re-install it. Alternatively, you can use the
RB_RegisterWithCSApp sub-tag to manually add a WebReport to a specific CSApp.
Note: the Ravenblack Application Analyzer provide a feature to register all ActiveViews or
WebReports in a selected CSApp.

Ravenblack Products
Enhanced Sub-tag Suite Date: 2025-03-04

1.3.3(3)

Page 36

Syntax
This sub-tag expects the data tag to specify a valid IniSection which also matches a valid
(installed) CSApp.

RB_CSAPPKINIREAD:GET:<IniKeyword>
This syntax is used to retrieve a unique KINI entry, using the specified keyword and the
specified IniSection (CSApp name).

RB_CSAPPKINIWRITE
The RB_CSAPPKINIWRITE sub-tag works the same as the RB_KINIWRITE sub-tag but
works exclusively with Content Server Applications. It also adds, edits, and/or deletes entries
from the KINI table but is exclusively used for Content Server Applications (CSApps).

Note: Only users with System Administrator privileges can use this sub-tag. To allow the sub-
tag to be used in an application you may use the “Run-as” feature for any WebReport that
contains this sub-tag.

Syntax
The sub-tag requires at least one action is specified from: ADD, SET, DELETE. It expects
the data tag to specify a valid IniSection which also matches a valid (installed) CSApp.

RB_CSAPPKINIWRITE:ADD:<IniKeyword>:<IniValue>
The ADD action creates a new item with the identified IniKeyword and IniValue. It can be
used with any existing IniSection that matches a CSApp, even if the containing WebReport is
not owned by that app.

For cases where a CSApp IniSection has not yet been created, the ADD action can be only be
used to add a brand-new section if the containing WebReport is owned by the CSApp
referenced in the IniSection.

RB_CSAPPKINIWRITE:SET:<IniKeyword>:<IniValue>
The SET action rewrites the IniValue corresponding to the specified IniKeyword. This action
can also be used to ADD a new IniKeyword to an existing IniSection but cannot be used if the
section doesn’t exist.

RB_CSAPPKINIWRITE:DELETE:<IniKeyword>
The DELETE action removes the identified IniKeyword from the section, regardless of
whether the containing WebReport is owned by the corresponding CSApp.

If the DELETE action would result in deleting the IniSection (no more entries) then the
containing WebReport must be owned by the CSApp referenced by the IniSection.

Ravenblack Products
Enhanced Sub-tag Suite Date: 2025-03-04

1.3.3(3)

Page 37

RB_FILEACTION
The RB_FILEACTION sub-tag allows various actions to be taken for files on a server. Only
users with System Administrator privileges can use this sub-tag and it should be used with
care and tested prior to deploying on a production system. Specifically, the sub-tag provides
create, copy, move, delete, upload, exists, rename, and update actions. This sub-tag also
provides two read-only features (path and list).

Syntax
Most of these features require the data tag to include a valid file path to a location on the
server. These file paths must include a “path variable” that automatically inserts the correct
file path for most Content Server directories. This sub-tag currently supports the path
variables listed in the table below but additional paths can be added if necessary. Contact
Ravenblack Support for more information.

Path Variables
(All paths shown, start from the server root folder.)

@appdata@ .\appData\

@csapps@ .\appData\webreports\csapps\csapplications\

@csappsstaging@ .\appData\webreports\csapps\csapplicationsstaging\

@supportdir@ .\support\

@csappssupportdir@ .\support\csapplications\

@supportassetdir@ .\appdata\supportasset\

@subtagdir@ .\appData\webreports\subtags\

@tempdir@ .\temp\

@logdir@ .\logs\

<filepath> RB_FILEACTION:CREATE
The CREATE action creates an empty file in the filepath directory specified, using the name
provided as part of the file path. A successful creation generates a blank string.

Example:
[LL_REPTAG_'@logdir@testfile.txt'
RB_FILEACTION:CREATE /]

Created in: the server logs directory
Filename: testfile.txt

<directorypath> RB_FILEACTION:COPY:<destination>
The COPY action copies a file specified in the filepath to a destination specified as a
parameter. The destination can be a file path or the DataID for a content Server container. A
successful copy generates a blank string. For a file destination, path variables must be used.

Example:
[LL_REPTAG_'@tempdir@testsub.txt'
RB_FILEACTION:COPY:'@subtagdir@' /]

Copies a file from the temp directory to
the sub-tag directory.

[LL_REPTAG_'@tempdir@Sample.doc'
RB_FILEACTION:COPY:[LL_REPTAG_&dest /]
/]

Copies a file from the temp directory to
the specified Content Server destination.

Ravenblack Products
Enhanced Sub-tag Suite Date: 2025-03-04

1.3.3(3)

Page 38

<filepath> RB_FILEACTION:MOVE:<destination>
The MOVE action moves a file specified in the filepath to a destination specified as a
parameter. Note that path variables must be used for the destination. Note that the move is
implemented as a copy action followed by a delete of the original file. If the delete action
failed (errors returned) the file may remain copied. A successful move generates a blank
string.

<filepath> RB_FILEACTION:RENAME:<newname>
The RENAME action expects a file specified in the file path and changes the name to the
specified new name.

<filepath> RB_FILEACTION:UPDATE:<content>
The UPDATE action writes content to a file specified in the filepath. The content can contain
multiple line delimiters if multiple lines are to be written. Once written, an operating system-
specific line delimiter is automatically appended to the end of the specified String.

<filepath> RB_FILEACTION:INIUPDATE:<section>:<key>:<value>
Writes an update to any INI type file as specified by the file path. If the specified file doesn't
exist, This action will create it. If the section, or key don’t exist, they are also created. If all
components already exist, then this action simply updates the value .
	
<filepath> RB_FILEACTION:INIDELETE:<section>:<key>
Writes an update to any INI type file as specified by the file path. If the specified file doesn't
exist, This action will create it.

<HTMLname> RB_FILEACTION:UPLOAD:[options]:[params]

Options: GETFILEINFO,CREATEFILE,CREATEOBJECT

The UPLOAD action is designed to receive a file specified in a POST request, and then either
create a new file on the server, or create a new Content Server object. Additionally there is an
option that returns all of the information about the uploaded file.

Rather than a file path specified in the data tag, a string identifier is provided. This identifier
references a field in the request that coincides with the ID of the FILE INPUT that was used
to upload a document. Using this identifier, RB_FILEACTION:UPLOAD accesses the file on
the server that contains the uploaded source. This file is then used to perform the creation or
information options.

Ravenblack Products
Enhanced Sub-tag Suite Date: 2025-03-04

1.3.3(3)

Page 39

Options
UPLOAD:GETFILEINFO
Returns an Oscript Assoc with information about the uploaded file from the operating system.
Fields are:
filePath – the full file path of the uploaded document on the server.
filename – the original file name of the document.
filetype – the file type (e.g. PDF).
mimeType – the mimetype of the document.

UPLOAD:CREATEFILE:<destination>
Creates a file on the file system in a location designated by the destination field. If the
destination includes a file name, that name will be used. If the destination only specified a
directory, then the filename of the original document will be used.

UPLOAD:CREATEOBJECT:<DataID>
Creates a file on the file system in a container specified with a DataID. This option always
creates document objects (subtype 144).

Examples:

Client code: <INPUT TYPE= "FILE" NAME="crazydocument"…>
Server
code:

[LL_REPTAG_'crazydocument' RB_FILEACTION:UPLOAD:GETFILEINFO
SETVAR:fileInfo /]

In this example, the GETFILEINFO option returns all of the information about the file that
contains the uploaded document.

Client code: <INPUT TYPE= "FILE" NAME="uploadFile"…>
Server
code:

[LL_REPTAG_'uploadFile'
RB_FILEACTION:UPLOAD:CREATEFILE:'@tempdir\newfile.txt' /]

In this example, the CREATEFILE option creates a file in the .\temp directory called
newfile.txt.

Client code: <INPUT TYPE= "FILE" NAME="uploadFile"…>
Server
code:

[LL_REPTAG_'uploadFile'
RB_FILEACTION:UPLOAD:CREATEOBJECT:12345 /]

In this example, the CREATEOBJECT option creates a new item in the container
referenced by the DataID 12345.

Read-only Actions
The options below are available with RB_FILEACTION, but are also available with
RB_FILEINFO. Some customers may restrict or remove RB_FILEACTION but they might
still require some of these non-invasive features so RB_FILEINFO can be used for that.
Additionally, some Ravenblack audits may identify the use of RB_FILEACTION as requiring
additionl security (e.g. security tokens). If you are only using one of the features below then
RB_FILEINFO may be preferable to use.

Ravenblack Products
Enhanced Sub-tag Suite Date: 2025-03-04

1.3.3(3)

Page 40

<filepath> RB_FILEACTION:EXISTS:[FILE/DIR]
The EXISTS option tests for the existence of the specified file path. It will return TRUE if the
specified path exists. If either FILE or DIR are specified, they will return TRUE only if the
filepath is a file or a directory respectively.

<directorypath> RB_FILEACTION:LIST:[NAMESONLY/NAMEPATHASSOC]
This option provides a list of all items in a specified directory on the file system. It supports
two different output variants:

• NAMESONLY – Returns an Oscript LIST with all of the file names found in the
directory.

• NAMEPATHASSOC – Returns an Oscript ASSOC with the file names as keys, and
the value for each item being the full path of the file.

<filepath> RB_FILEACTION:PATH
The PATH option simply returns a file path based on the file path specified in the data tag.
The main purpose of this is to convert path variables (as described above) into an actual path
that can then be stored for use in other sub-tags.

RB_FILEINFO
The RB_FILEINFO sub-tag provides options to return information about files and directories
on the server file system.

Syntax
Each of these options expects a file or directory path to be specified in the data tag. These
paths can include a “path variable” that automatically inserts the correct file path for most
Content Server directories. This sub-tag currently supports the path variables listed in this
table.

Path Variables (All paths shown, start from the server root folder.)
@appdata@ .\appData\

@csapps@ .\appData\webreports\csapps\csapplications\

@csappsstaging@ .\appData\webreports\csapps\csapplicationsstaging\

@supportdir@ .\support\

@csappssupportdir@ .\support\csapplications\

@supportassetdir@ .\appdata\supportasset\

@subtagdir@ .\appData\webreports\subtags\

@tempdir@ .\temp\

@logdir@ .\logs\

Ravenblack Products
Enhanced Sub-tag Suite Date: 2025-03-04

1.3.3(3)

Page 41

<filepath> RB_FILEINFO:EXISTS:[FILE/DIR]
The EXISTS option tests for the existence of the specified file path. It will return TRUE if the
specified path exists. If either FILE or DIR are specified, they will return TRUE only if the
filepath is a file or a directory respectively.

<filepath> RB_FILEINFO:FILEINFO
The FILEINFO option returns all of the available file information for the specified file.
Specifically it returns: createDate, modifyDate, and size.

<directorypath> RB_FILEINFO:LIST:[NAMESONLY/NAMEPATHASSOC]
This option provides a list of all items in a specified directory on the file system. It supports
two different output variants:

• NAMESONLY – Returns an Oscript LIST with all of the file names found in the
directory.

• NAMEPATHASSOC – Returns an Oscript ASSOC with the file names as keys, and
the value for each item being the full path of the file.

<filepath> RB_FILEINFO:PATH
The PATH option converts path variables into an actual path to use for other sub-tags.

<filepath> RB_FILEINFO:SEPARATOR
The SEPARATOR option returns the appropriate file system separator. It will return \ or /.

<filepath> RB_FILEINFO:INIREAD:<inisection>:<inikey>
This option provides a way of reading entries from custom INI files (usually created using the
RB_FILEACTION:INIUPDATE option). The file path must point to a valid file, preferably
with an INI extension, and it should have at least one section, and a key field that matches the
specified “inikey”. If the key is not found, only a blank string is returned. If the section is not
found, a soft error is returned, i.e. the sub-tag .fError field is set to true, but by default only a
blank string is returned. A normal error message, or a custom one, can be enabled using the
ONERROR sub-tag.

Ravenblack Products
Enhanced Sub-tag Suite Date: 2025-03-04

1.3.3(3)

Page 42

RB_FORMDBREAD
The RB_FormDBRead sub-tag is used to retrieve database entries from Content Server tables
created by the Content Server Forms module that is included with Content Server. Content
Server Forms support different storage mechanisms, but this sub-tag is explicitly used to
retrieve data that is stored using database tables, e.g., Submission mechanism = SQL Table.

Security Notes
• The end user running this sub-tag must have SEE/SEECONTENTS permission applied to

whichever object has been specified in the data tag (could be a form or a form template).
• The “flexible mode” noted below provides the ability to construct complex logic

expressions allowing form data to be referenced based on multiple columns, values, and
conditions. As values are often passed as parameters to a WebReport, this feature has
intentionally been designed so that most of the expression is defined in the WebReport
(rather than being passed as a parameter). Separating the data parameters from the logic
makes it easier for this sub-tag to implement security checks to block attempts to inject
SQL. Despite this design, the onus is on the WebReports developer to use this feature as
designed. Specifically, only values should be passed as parameters and the rest of the
expression (column names, operators, AND, OR) should be specified in the WebReport
itself. See the @FILTER directive for more information on building these expressions.

• Note, the security check used for passed parameters includes code from the LiveReports
“secure mode”, but also adds some protection to avoid any attempts to return more results
than was intended by the developer.

Syntax Modes
This sub-tag is designed to work in one of two modes.
• Simple mode – supports the most common development use cases but has limited

flexibility. This mode uses normal sub-tag syntax to specify a few useful parameters.
• Flexible (advanced) mode – allows more complex lookup expressions, and several

additional options. These options are specified using a special “directive” syntax, similar
to some content control tags, e.g., @COLUMNS is used to specify which columns to
return. A full list of directives is specified below.

General Syntax Notes
This sub-tag expects the data tag to specify a valid form or form Template Id. Either the form
or the form template can return any or all objects in the corresponding database table, but in
simple syntax mode a form Id will only return entries that were made through that form
specific form. Using flexible mode, the results can be constrained in a similar way by using
the @MyFormOnly directive along with a form Id but by default, all matching results will be
returned regardless of which form was used to enter them.

Ravenblack Products
Enhanced Sub-tag Suite Date: 2025-03-04

1.3.3(3)

Page 43

RB_FormDBRead:GET:<parameters >
This syntax uses the optional “GET” action. This syntax is provided for consistency with the
RB_FormDBWrite sub-tag, but it is optional and can be omitted. For subsequent examples,
the GET parameter will not be shown.

Simple Mode
RB_FormDBRead:<lookup column>:<lookup key>:[select column]
This syntax is used to return either a single row of data, or a data value from a single row and
column. The lookup column and lookup key are used to determine which row is returned
based on a simple equals (=) operator, e.g. SEQ = 12.
Without a column being specified, an entire row is returned using an Oscript Record structure.
E.g.:
R<'name'='Bob Smith','age'=49>

This structure can be referenced using the RECORD sub-tag, e.g.: RECORD:name
If a valid column is specified, then only data from that particular column is returned as its
native type.
Note that, if the expression returns more than one match, the first row (based on the order
they were originally added) is returned.

Flexible Mode
RB_FormDBRead:<directives and parameters>
This syntax is used to return simple data values, multi-column results or multiple rows with
configurable columns (among other things). There are several options available using a
system of directives and parameters. The basic syntax works like this:

@directive1:param1:paramN:@directive2….
All parameters that follow a directive, belong to that directive, up until the next directive is
found, or there are no more parameters. This is equivalent to passing parameters to a function.

Ravenblack Products
Enhanced Sub-tag Suite Date: 2025-03-04

1.3.3(3)

Page 44

As another extension of the common sub-tag syntax, any parameter can be specified in one of
these formats:

Parameter
Method

Example Description

Simple Value :<string value>: A single value is passed to a directive.
Comma
separated
string

:|Value1,value2,value3|: Multiple comma separated values are
converted into multiple parameters. In
this example, one sub-tag string
parameter becomes three. Note that the
pipe character | is used on each side of
the string to specify that the text is
CSV.

Oscript List :{'value1', 'value2', 'value3'}: Multiple values specified in an Oscript
list, are converted into multiple
parameters. In this example, one sub-tag
list parameter becomes three.

Oscript
Assoc

:A<1,?,'Age'=44,'Name'='Bob'>: Multiple values specified as name/value
Assoc fields, are converted into
parameters. This format is normally
used where a column/value pair are
required; however, where a list is
required, the field name and field value
are broken out into a pair of values.

Oscript
Record

:R<'Age'=44, Name'='Bob'>: Multiple values specified as name/value
Record fields, are converted into
parameters. This format is normally
used where a column/value pair are
required; however, where a list is
required, the field name and field value
are broken out into a pair of values.

JSON Array :["value1", "value2", "value3"]: Multiple values specified in a JSON
format array, are converted into
multiple parameters. In this example,
one sub-tag string/JSON parameter
becomes three. Note that this JSON
structure doesn’t normally require
quoting unless an additional double
quote is required in one of the array
values.

Ravenblack Products
Enhanced Sub-tag Suite Date: 2025-03-04

1.3.3(3)

Page 45

JSON Object : '{"Age":44}': Multiple values specified in a JSON
Object are converted into parameters.
This format is normally used where a
column/value pair are required;
however, where a list is required, the
field name and field value are broken
out into a pair of values.
Note that in this example, the JSON
structure had to be wrapped in quotes as
the colon would otherwise confuse the
syntax. Where a data tag is used, these
quotes would not be necessary.

The array, list, or CSV type parameters allow multiple parameters to be specified in a single
sub-tag parameter, allowing lists of parameters to be specified using data tags if necessary.

For example:
… RB_FORMDBREAD:@COLUMNS:[LL_REPTAG_&parmList /]@MULTIROWS

The following examples show how some of these methods would look if hard coded in the
WebReport but more often these values would be passed through tags.
...@COLUMNS:|value1,value2,value3|:@MULTIROWS…

Or
...@COLUMNS:{'value1', 'value2', 'value3'}:@MULTIROWS…

Are equivalent to:
...@COLUMNS:value1:value2:value3:@MULTIROWS…

Directives
This table shows the currently supported directives, what they are used for and how many
parameters they expect.

Directive Params Description
@SQLTABLENAME 0 Returns the name of the SQL table associated with the form

template (even if a form Id has been specified with the data
tag). This directive is always used on its own.
E.g. RB_FORMDBREAD:@SQLTABLENAME

Ravenblack Products
Enhanced Sub-tag Suite Date: 2025-03-04

1.3.3(3)

Page 46

Directive Params Description
@FILTER
(Mandatory unless
SQLTABLENAME
is used.)

2-N This directive is used to create an expression to specify which
rows to return. It supports a simple and complex approach.
The simple approach is the same as used in the Simple Mode,
i.e.:
<lookup column>:<lookup key>.

To create more flexible expressions, a string format approach
is used consisting of:

• An Expression string including operators, but using
%1, %2, etc. to specify values.

• 1 to N number of parameters for insertion.

Example:
 "Seq > %1 AND Name = ' %2' ":12:Bob: …

Would resolve to:

"Seq > 12 AND Name = 'Bob' "
This approach has been used to allow values to be passed to
WebReports without the need to pass full SQL syntax which
can create a risk of SQL injection. As the values are separate
from the expression, this sub-tag is able to screen the input for
any insertion attempts.
Note that if you need to specify any percent signs within the
expression template, you must use double percent signs.
E.g.
" Name LIKE '%%%4%%' "

@COLUMNS 1-N Specifies one or more columns to be returned. If not
specified, all columns are returned.
Examples:
@COLUMNS:Name:Age: …

@COLUMNS:{ 'Name', 'Age'}: …

@COLUMNS:|Name,Age|: …

@FORMAT 1 Specifies which format to use for the returned data. This
option currently only supports OSCRIPT and JSON, and
defaults to Oscript. See the next chart for further information
on how these formats work.

@MULTIROWS 0 Specifies that all rows will be returned rather than only the
first one. If this directive is not used, only one row will be
returned even if more than one match is found. Note that, in
this case, the first row is returned (based on the order they
were originally added).

@MYFORMONLY 0 Specifies that if a form Id was used in the data tag, only
entries created with this form will be returned.

Ravenblack Products
Enhanced Sub-tag Suite Date: 2025-03-04

1.3.3(3)

Page 47

Directive Params Description
@SORTCOLUMNS 1-N Specifies one or more sort columns to be used. If not

specified, data is sorted by
DataId,Seq,RowSeqNum,IterationNum.
Note that if the @MULTIROWS directive is not used, then
only one row is returned and the SORTCOLUMNS option is
redundant (and will generate an error).

Examples:
@SORTCOLUMNS:Name:Age: …

@SORTCOLUMNS:{ 'Name', 'Age'}: …

@SORTCOLUMNS:|Name,Age|: …

@SQLDEBUGON 0 Allows verbose error messages to be used by developers. By
default, a SQL error does not return any information about the
SQL syntax. This option should not be used on a production
system.

Output Formatting

Results Mode Oscript JSON
Single value from
row/column. Simple Simple Number/String value
Single row. Simple Record structure Object
Single row,
no @multirows directive. Flexible Record structure Object
Single row,
has @multirows directive. Flexible

RecArray structure
(only 1 row) Array of Objects

Multiple rows
Simple

Record structure
(only 1 row) Object

Multiple rows,
has @multirows directive. Flexible

RecArray structure
(multiple rows) Array of Objects

Ravenblack Products
Enhanced Sub-tag Suite Date: 2025-03-04

1.3.3(3)

Page 48

Examples
This section provides some usage examples. We assume a valid form Id has been provided for
all examples.

Simple Mode: Lookup column/key, no select column

Syntax RB_FORMDBREAD:Seq:[LL_REPTAG_&SeqNo /] /]

Output R<'VolumeID'=-2000,'DataID'=139695,'VersionNum'=0,'Seq'=1,'RowSeqNum'=1,
'IterationNum'=1,'Name'=Bill Smith, 'Age'=49,'Address'='11 Sunshine boulevard'>

Simple Mode: Lookup column/key, select column specified

Syntax RB_FORMDBREAD:Seq:[LL_REPTAG_&SeqNo /]:Name /]

Output Bill Smith

Flexible Mode: Return the name of the SQL Table

Syntax RB_FORMDBREAD:@SQLTableName

Output PersonnelData

Flexible Mode: Return a single row, two columns

Syntax RB_FORMDBREAD:

@FILTER:DataId:[LL_REPTAG_$form2 /]:@COLUMNS:Name:Age /]

Output R<'Name'='Bill Smith', 'Age'=49>

Flexible Mode: Multiple Rows, complex filter expression

Syntax RB_formdbread:

@FILTER:"Age = %1":[LL_REPTAG_&AGE /]:@COLUMNS:Name:Age:

@MULTIROWS /]

Output V{<'Name','Age'><'Bill Smith',49><'Bob Jones',49>}

Flexible Mode: Only return rows entered by the referenced form

Syntax [LL_REPTAG_$form2 RB_FORMDBREAD:FILTER:"Age > %1":
[LL_REPTAG_&AGE /]:@COLUMNS:Name:Age /]:@MYFORMONLY /]

Output V{<'Name','Age'><'Bill Smith',49><'Bob Jones',49>}

Ravenblack Products
Enhanced Sub-tag Suite Date: 2025-03-04

1.3.3(3)

Page 49

Flexible Mode: Multiple Rows, two columns, Sort by Name, JSON format

Syntax RB_formdbread:

@FILTER:"Age = %1":[LL_REPTAG_&age /]:
@COLUMNS:Name:Age:@MULTIROWS@SORTCOLUMNS:Name:@FORMAT:JSON /]

Output [{"Name":"Bill Smith","Age":49},{"Name":"Bob Jones","Age":49}]

Flexible Mode: Two-part filter expression, Columns specified with CSV,
Sort columns specified using a list

Syntax RB_formdbread:@FILTER:"DataId = %1 AND Age > %2":
[LL_REPTAG_$form /]:[LL_REPTAG_&age /]:@COLUMNS:|Name,Age|:
@MULTIROWS:@SORTCOLUMNS:{'Name','Age'} /] /]

Syntax using
list param tags

RB_formdbread:@FILTER:"DataId = %1 AND Age > %2":
[LL_REPTAG_&parmList /]:@COLUMNS:[LL_REPTAG_&columns /]:
@MULTIROWS:@SORTCOLUMNS:[LL_REPTAG_&sortcols /] /]

Output V{<'Name','Age'><'Craig Getty',61><'Bill Smith',49>}

Ravenblack Products
Enhanced Sub-tag Suite Date: 2025-03-04

1.3.3(3)

Page 50

RB_FORMDBWRITE
The RB_FormDBWrite sub-tag is used to add, edit, or delete database entries from Content
Server tables created by the Content Server Forms and WebForms modules. Content Server
forms support different storage mechanisms, but this sub-tag is explicitly used to manage data
that is stored using database tables, e.g., Submission mechanism = SQL Table.

Security Notes
• The end user running this sub-tag must have “Use "SQL Table" Submission Mechanism”

permission applied to the Form object specified by the data tag. The Form Template
associated with the Form object should have at least a level of See/SeeContents
permissions.

• The “flexible mode” noted below provides the ability to construct complex logic
expressions allowing form data to be referenced based on multiple columns, values and
conditions. As values are often passed as parameters to a WebReport, this feature has
intentionally been designed so that most of the expression is defined in the WebReport
(rather than being passed as a parameter). Separating the data parameters from the logic
makes it easier for this sub-tag to implement security checks to block attempts to inject
SQL. Despite this design, the onus is on the WebReports developer to use this feature as
designed. Specifically, only values should be passed as parameters and the rest of the
expression (column names, operators, AND, OR) should be specified in the WebReport
itself. See the @FILTER directive for more information on building these expressions.

• Note, the security check used for passed parameters includes code from the LiveReports
“secure mode”, but also adds some protection to avoid any attempts to return more results
than was intended by the developer.

Syntax Modes
This sub-tag is designed to work in one of two modes. The help for sub-tag RB_FormDBRead
includes a more detailed explanation of these modes.

• Simple mode – supports the most common development use cases but has limited

flexibility. This mode uses normal sub-tag syntax to specify the data to be edited/deleted
and any data to be added or edited.

• Flexible (advanced) mode – allows more complex lookup expressions, and several
additional options. These options are specified using a special “directive” syntax, similar
to some content control tags, e.g., @DATA is used to specify which data values to insert.
All directives supported for this sub-tag are specified in a table under Flexible Mode
below.

Ravenblack Products
Enhanced Sub-tag Suite Date: 2025-03-04

1.3.3(3)

Page 51

General Syntax Notes
Note that this sub-tag is very similar to the RB_FORMDBREAD sub-tag with the exception
that this sub-tag has different “actions”, different directives, and most actions include data
values for addition or editing, specified in pairs of column names and values. For this reason,
the documentation for RB_FORMDBWrite focuses on the unique features of this particular
sub-tag.

This sub-tag expects the data tag to specify a valid form Id. The syntax and examples that
follow, will mostly assume that a valid form Id is provided. Based on the specified form and
its associated form Template, all add, edit, or delete actions operate on the SQL table
referenced by the form template.

Syntax
This sub-tag supports the following actions; however, the specific syntax varies according to
which of the two modes (simple or flexible) are being used.

RB_FormDBWrite:ADD:<Data Values>

RB_FormDBWrite:EDIT:<Lookup Parameters>:<Data Values>

RB_FormDBWrite:EDITALL:<Lookup Parameters>:<Data Values>

RB_FormDBWrite:DELETE:<Lookup Parameters>

RB_FormDBWrite:DELETEALL:<Lookup Parameters>

Simple Mode
RB_FormDBWrite:ADD:

<Add Column1>:<Add Value1>:[column:value]…
This action and syntax is used to add a new item to the SQL Table. New values will only be
added for the specified columns. The remainder will be added as nulls (if nulls are allowed).
If an invalid column name is specified, an error is returned. This action automatically sets a
variable called: RefNum that contains the newly added sequence number.

RB_FormDBWrite:EDIT:

<lookup column>:<lookup key>:<Add Column1>:<Add
Value1>:[Additional pairs]

Edits a row of data as referenced by the lookup column and lookup key. This could use
“SEQ” and a sequence number, or any column/value pair from the data.

The EDIT action will only change the specific fields that have been specified in each
column/value pair for addition. Any non-specified fields will remain the same.

Ravenblack Products
Enhanced Sub-tag Suite Date: 2025-03-04

1.3.3(3)

Page 52

If the lookup column/value pair returns more than one result, an error is generated, and the
EDIT does not occur. To override this behaviour, and allow the first matching row to be
edited, the ONERROR sub-tag can be used to return a blank error (ONERROR:BLANK).
This allows the EDIT action to occur. Note that when there are multiple matches, the item
with the Seq, RowSeqNum, and IterationNum is the one that is edited. To explicitly allow
editing of multiple rows, the EDITALL parameter must be used.

RB_FormDBWrite:EDITALL:

<lookup column>:<lookup key>:<Add Column1>:<Add
Value1>:[Additional pairs]

Works like EDIT but it allows multiple rows of data (that have the same lookup value) to be
changed.

RB_FormDBWrite:DELETE:

<lookup column>:<lookup key>
Deletes a row of data as referenced by the lookup column and lookup key. This could use
“SEQ” and a sequence number, or any column/value pair from the data. If the column/value
pair returns more than one result, an error is generated, and the DELETE does not occur. To
explicitly allow deleting of multiple rows, the DELETEALL parameter should be used.

RB_FormDBWrite:DELETEALL:

<lookup column>:<lookup key>
Works like EDIT but it allows multiple rows of data (that have the same lookup value) to be
changed.

Flexible Mode
RB_FormDBWrite:<directives and parameters>
This syntax is used to add, edit and delete records as with the simple mode; however, more
complex lookup expressions are used, several different modes of specifying data are
available, and some useful options are also provided.

This mode uses a syntax construct called “directives” that is explained in detail under the
Flexible Mode section for RB_FORMDBREAD. A table explaining the various advanced
methods for specifying parameters can also be found there. The following table illustrates this
advanced parameter approach, showing how it would be used to specify data for adding or
editing (following the @DATA directive).

Ravenblack Products
Enhanced Sub-tag Suite Date: 2025-03-04

1.3.3(3)

Page 53

These input type examples are all used to specify one or more name/value pairs to be used for
adding or editing data values.

Input Type Syntax example

Sub-tag Method … :Name:'Bill Smith':Age:49:Address:'11 Sunshine boulevard'
Oscript List {'Name','Bill Smith', 'Age',49,'Address','11 Sunshine boulevard'}
JSON Array ["Name","Bill Smith", "Age",49,"Address","11 Sunshine boulevard"]
OScript Record R<'Name'='Bill Smith','Age'=49,'Address'='11 Sunshine boulevard'>
Oscript Assoc A<1,?,'Name'='Bill Smith','Age'=49,'Address'='11 Sunshine boulevard'>
JSON Object {"Name"="Bill Smith", "Age"=49,"Address"="11 Sunshine boulevard"}
CSV Method |Name,Bill Smith,Age,49,Address,11 Sunshine boulevard|

The Array, Object, Assoc, Record or CSV type parameters allow multiple parameters to be
specified in a single sub-tag parameter, allowing groups of parameters to be specified in
single data tags if necessary.

Directives
The following table shows the currently supported directives, what they are used for and how
many parameters they expect.

Ravenblack Products
Enhanced Sub-tag Suite Date: 2025-03-04

1.3.3(3)

Page 54

Directive Parms Description
@FILTER
(Mandatory for
EDIT, EDITALL,
DELETE,
DELETEALL)

2-N This directive is used to create an expression to specify which
rows to return. It supports a simple and complex approach.
The simple approach is the same as used in the Simple Mode,
i.e.:
<lookup column>:<lookup key>.
To create more flexible expressions, a string format approach
is used consisting of:

• An Expression string including operators, but using
%1, %2, etc. to specify values.

• 1 to N number of parameters for insertion.

Example:
 "Seq > %1 AND Name = ' %2' ":12:Bob: …

Would resolve to:
"Seq > 12 AND Name = 'Bob' "

This approach has been used to allow values to be passed to
WebReports without the need to pass full SQL syntax which
can create a risk of SQL injection. As the values are separate
from the expression, this sub-tag is able to screen the input
for any insertion attempts.
Note that if you need to specify any percent signs within the
expression template, you must use double percent signs.
E.g.
" Name LIKE '%%%4%%' "

@DATA
(Mandatory for
ALL, EDIT,
EDITALL)

2-N Specifies name/value pairs for the column name and the value
to insert for add or edit actions.
For adding or editing actions, only the specified columns are
changed, any unspecified columns are left alone or as NULL
(if NULLs are allowed).

@FORMAT 1 Specifies which format to use for any return from the
operation. This option currently only supports OSCRIPT and
JSON, and defaults to Oscript. See the Output chart below for
further information on how these formats work for different
responses.

@RESPONSE 1 Specifies what to return from the operation. Defaults to blank
string. Supported response types:
BLANK – Empty string
REFNUMS – Either one sequence number or a list.
STATUS – A status record with fields to indicate the
outcome of the operation.
See the response type chart below for further information
on responses.

Ravenblack Products
Enhanced Sub-tag Suite Date: 2025-03-04

1.3.3(3)

Page 55

@SQLDEBUGON 0 Allows verbose error messages to be used by developers. By
default, a SQL error does not return any information about
the SQL syntax. This option should not be used on a
production system.

Response Types
@RESPONSE:<type> Normal Error
BLANK <blank string> Normal error string
REFNUMS List of 1 or more sequence numbers

(format determines whether Oscript
list or JSON array)

Normal error string

STATUS Returns an Oscript Assoc or a JSON object with status fields:
- error: false
- errorMsg:""
- refnums: (List/array) of

Sequence numbers. For
ADD action, the number of
the newly added item is
returned; for edit and delete
actions a list of the
sequence numbers acted
upon is returned.

- Error:true
- errorMsg:"<error

string"
- refnums:[]

Output Formatting
Results Oscript JSON

New record number (SEQ)
Edited record number
Deleted record number

String Value

Multiple record numbers List Array
Status Record:
error=true/false
errorMsg="text"
refnums={1,2,3}

ASSOC Object

Examples
The next section provides some usage examples. We assume a valid form Id has been
provided for all examples.

Ravenblack Products
Enhanced Sub-tag Suite Date: 2025-03-04

1.3.3(3)

Page 56

Simple Mode: Add item, use variable to display new Seq number.

Syntax RB_FORMDBWRITE:ADD:Name:"Bill Smith":Age:49

[LL_REPTAG_!refNum /]

Output "6" (newly added sequence number)

Simple Mode: Edit Item, single column change.

Syntax RB_FORMDBWRITE:EDIT:Seq:[LL_REPTAG_&SeqNo /]:Age:50 /]

Output ""

Flexible Mode: Add a record, data specified as an Oscript List

Syntax RB_FORMDBWRITE:ADD:

@DATA:{'Name',[LL_REPTAG_&Name /],'Age',[LL_REPTAG_&Age /]}:

@RESPONSE:REFNUMS

Output {7}

Flexible Mode: Edit multiple items, Data specified with Oscript Assoc

Syntax RB_FORMDBWRITE:EDITALL:

@FILTER:"Date > %1":[LL_REPTAG=ModifyDate /]:
@DATA:A<1,?,'Name'='Bill Smith','Age'=49>:

@RESPONSE:STATUS@FORMAT:JSON

Output {"error":false, "errorMessage":"", "refNums":[3,5,9]}

Flexible Mode: Delete multiple items. Fixed expression

Syntax RB_FORMDBWRITE:DELETEALL:

@FILTER:"delete = true":

@RESPONSE:STATUS@FORMAT:JSON

Output {"error":false, "errorMessage":"", "refNums":[1,2,3]}

Flexible Mode: Edit an item, JSON array to specify the filter params.

Syntax RB_FORMDBWRITE:EDIT:
@FILTER:["ID <> %1 AND Name LIKE '%%%2%%' ",-1,"[LL_REPTAG_&srch /]"]:
@DATA:…….

@RESPONSE:STATUS:@FORMAT:OSCRIPT

Output A<1,?,'error'=false,'errorMessage'='','refnums'={5}>

Ravenblack Products
Enhanced Sub-tag Suite Date: 2025-03-04

1.3.3(3)

Page 57

RB_GETTEXTFILE
The RB_GETTEXTFILE sub-tag is similar to the GETTEXT sub-tag, but it accepts the path
to a file on the file system in the data tag, and returns text content from the specified file.
This sub-tag supports path variables that can be used as the first part of a file path (as with
RB_FILEACTION and RB_FILEINFO). Unlike these sub-tags, these variables are not
mandatory.

Path Variables
(All paths shown, start from the server root folder.)

@appdata@ .\appData\

@csapps@ .\appData\webreports\csapps\csapplications\

@csappsstaging@ .\appData\webreports\csapps\csapplicationsstaging\

@supportdir@ .\support\

@csappssupportdir@ .\support\csapplications\

@supportassetdir@ .\appdata\supportasset

@subtagdir@ .\appData\webreports\subtags

@tempdir@ .\temp\

@logdir@ .\logs\

Example:
A file path could be specified like this:

[LL_REPTAG_"@supportdir@myfolder\help.txt" RB_GETTEXTFILE SETVAR:helptxt /]

RB_INIPREFSREAD
The RB_INIPREFSREAD sub-tag read entries from a specific section in the opentext.ini file.
It works in a similar way to RB_KINIREAD and RB_CSAPPSKINIREAD.

Syntax
This sub-tag expects the data tag to specify a valid section in the opentext.ini file.

RB_INIPREFSREAD:GET:<fieldname>
This syntax is used to return the value of a specified field name.

RB_INIPREFSWRITE
The RB_INIPREFSWRITE adds, edits, and/or deletes fields from a specified opentext.ini
section. It works in a similar way to
RB_ and RB_CSAPPSKINIWRITE.

If the section does not exist in the opentext.ini file, it will create a new one.
Only users with System Administrator privileges can use this sub-tag.

Ravenblack Products
Enhanced Sub-tag Suite Date: 2025-03-04

1.3.3(3)

Page 58

Syntax
The sub-tag accepts different mandatory actions. It expects the data tag to specify either a
valid existing section name in the opentext.ini file or a valid text name to use as a new section
name (ADD).

RB_INIPREFSWRITE:ADD:<fieldname>:<value>
The ADD action creates a field using the specified field name and populates it with the
corresponding value. If the specified section name (in the data tag) does not exist, it will be
created.

RB_INIPREFSWRITE:SET:<fieldname>:<value>
The SET action modifies the value corresponding to the specified field name.

RB_INIPREFSWRITE:DELETE:<IniKeyword>
The DELETE action removes the specified keyword/value from the section referenced in the
data tag.

RB_INIPREFSWRITE:DELETESECTION:<IniKeyword>
The DELETESECTION action removes all of the keyword/values in a specified section,
effectively removing that section from the opentext.ini file. Note that the section name will
remain and cannot be automatically removed; however, it will not affect any functionality.

RB_KINIREAD
The RB_KINIREAD sub-tag reads entries from the KINI table.

Syntax
This sub-tag expects the data tag to specify a valid IniSection name.

RB_KINIREAD:GET:<IniKeyword>
This syntax is used to return values from the KINI table section specified by the data tag and
using the specified keyword.

RB_KINIWRITE
The RB_KINIWRITE sub-tag adds, edits, and/or deletes entries from the KINI table. Only
users with System Administrator privileges can use this sub-tag.

Syntax
This sub-tag expects the data tag to specify a valid IniSection name.

RB_KINIWRITE:ADD:<IniKeyword>:<IniValue>
The ADD action creates a new item with the identified IniKeyword and IniValue. This
essentially does the same as SET but should be used for new entries.

Ravenblack Products
Enhanced Sub-tag Suite Date: 2025-03-04

1.3.3(3)

Page 59

RB_KINIWRITE:SET:<IniKeyword>:<IniValue>
The SET action rewrites the IniValue referenced by the specified IniKeyword.

RB_KINIWRITE:DELETE:<IniKeyword>
The DELETE action removes the identified IniKeyword from the section.

RB_RbPrefsRead
The RB_RBPREFSREAD sub-tag is designed to work with non-OpenText INI files. It works
in a similar way to RB_INIPREFSREAD but normally works with a Ravenblack specific INI
file (Ravenblack.ini). In the future we may support other custom files.

Syntax
The default Ravenblack file is stored at:

./config/Ravenblack.ini

RB_RBPREFSREAD:GET:<fieldname>
The data tag is used to specify a section in the file, and the GET action is used to return the
value for a specified field name. This action is optional, if no action is specified, a GET action
is assumed.

RB_RBPREFSREAD:GETSECTIONS
The GETSECTIONS action is used to return all of the sections in the ini file. The data tag is
not used for this action.

RB_RBPREFSREAD:GETPREFS:<sectionname>
The GETPREFS action is used to return all fields (preferences) listed under the specified
section in the ini file. The data tag is not used for this action.

RB_RBPREFSWRITE
The RB_RBPREFSWRITE sub-tag is designed to add, edit, or delete fields for non-OpenText
INI files. It works in a similar way to RB_INIPREFSWRITE but normally works with a
Ravenblack specific INI file. In the future it may be possible to create and manage a custom
file. Currently the RB_FILEACTION sub-tag can be used for this.

Only users with System Administrator privileges can use this sub-tag.

Syntax
This sub-tag expects the data tag to specify a valid section in the INI file.

Ravenblack Products
Enhanced Sub-tag Suite Date: 2025-03-04

1.3.3(3)

Page 60

RB_RBPREFSWRITE:ADD:<fieldname>:<value>
The ADD action creates a field using the specified field name and populates it with the
corresponding value.
If the section does not exist in the INI file, it is created.

RB_RBPREFSWRITE:SET:<fieldname>:<value>
The SET action modifies the value corresponding to the specified field name.

RB_RBPREFSWRITE:DELETE:<IniKeyword>
The DELETE action removes the specified field from the section referenced in the data tag.

RB_ThreadVarRead
RB_ThreadVarRead and RB_ThreadVarWrite are used to manage variable values on a per-
thread basis. These variables differ from standard WebReports variables in that WebReports
variables only exist for the life of the WebReport execution and thread variables exist for the
time that the server is running.
This is also useful to allow data to be shared between WebReports running on the same thread
for a single execution and they can’t share variables with each other.
The RB_THREADVARREAD sub-tag reads the value stored in a specified variable.

Syntax
This sub-tag expects the data tag to specify the name of a variable to retrieve.

RB_THREADVARREAD:GET
This syntax is used to return the value of a variable specified by the data tag.

RB_ THREADVARWRITE
The RB_ThreadVarWrite sub-tag is used to set or delete variables stored for the current
thread.

Syntax
The data tag is used to specify the variable name to be set or deleted.

RB_THREADVARWRITE:SET:<value>
The SET action either adds a variable (if it doesn’t already exist) or modifies it.

RB_THREADVARWRITE:DELETE
The DELETE action removes the specified variable (if it exists) from the set of variables
stored for the current thread.

Ravenblack Products
Enhanced Sub-tag Suite Date: 2025-03-04

1.3.3(3)

Page 61

Overrides
In addition to RB_ASSOC and RB_DECODE that provide significant enhancements to
existing OpenText sub-tags, the following sub-tags are also included in the sub-tag suite.
These sub-tags provide relatively minor enhancements and improvements to existing
OpenText Sub-tags.

LLURL_FUNCTIONMENU
Overrides the existing functionmenu sub-tag (subscript) to allow version numbers to be
included in the LLURL:FUNCTIONMENU sub-tag.

RB_NODEINFO
Adds GUID to the node fields that can be returned.

RB_SECURETOKEN
Primarily created to allow the developer to control whether plus signs (+) are escaped or not
as escaping the plus sign is only appropriate for GET requests. This version of securetoken
defaults to “false” (no escaping) but this can be toggled. The following additional parameters
are provided:

§ ESCAPE – Forces that the plus sign is escaped.

§ NOESCAPE – Forces that the plus sign is not escaped. (Default.)
§ GETREFRESHTIME – Returns the amount of time that a secure token exists.

RB_VERSIONACTION
Provides additional fields that can be modified. Specifically, it adds:

§ MIMETYPE

§ FILENAME
§ FILETYPE

TOJSON
Improves performance and fixes an issue where a simple string is converted to a list during
conversion.

Ravenblack Products
Enhanced Sub-tag Suite Date: 2025-03-04

1.3.3(3)

Page 62

Beta Sub-tags
Most of these sub-tags are already in limited usage by Ravenblack but have not been finalized
and or fully tested. They are currently available by request and will be added to the sub-tag
suite in a future release.

RB_ZIP
Can zip (compress) one or more files from either a Content Server (using a DataId) or a file
path. The zipped content can be stored in Content Server or in a file location.

RB_CSAPPINFO
Returns information for any given CSApp on the system. If used from a WebReport that is
“owned by” a CSApp, this sub-tag defaults to the owning CSApp.

RB_SETEXTDATA
Can be used to set the Extended Data for an object. (this sub-tag name may change)

RB_USERINFO
Extends the existing USERINFO sub-tag to provide additional user fields.

RB_WEBREPORTBUILDER
Can be used to create a WebReport and or set the various pieces of meta data such as
constants and parameters.

Ravenblack Products
Enhanced Sub-tag Suite Date: 2025-03-04

1.3.3(3)

Page 63

Supporting Sub-tags
The sub-tag suite currently includes a sub-tag called RB_CallSubtag. This sub-tag is not
explicitly advertised as it is only used to support interactions between the primary sub-tags.
This sub-tag is required for several of the primary sub-tags so it should not be removed. This
sub-tag may be deprecated at some point so it should not be used outside of this sub-tag suite
dependencies.

Ravenblack Products
Enhanced Sub-tag Suite Date: 2025-03-04

1.3.3(3)

Page 64

About Ravenblack
Ravenblack Technical Services enables users of OpenText Content Intelligence, Perspectives,
and Smart View to get more out of their investments in OpenText Content Suite and Extended
ECM (xECM) platforms. Owned by Greg Petti, one of the original founders of Resonate
Knowledge Technologies (RKT), Ravenblack provides products, consulting, best practice
advice, training, and development services to organizations around the world.

For comments, suggestions, or support, please contact us via:
support@ravenblackts.com

mailto:support@ravenblackts.com

